Jeremy Chua, Erik K.R. Hanko, Andrew Yiakoumetti, Ruth A. Stoney, Jakub Chromy, Kris Niño G. Valdehuesa, Katherine A. Hollywood, Cunyu Yan, Eriko Takano, Rainer Breitling
{"title":"Bioproduction of methylated phenylpropenes and isoeugenol in Escherichia coli","authors":"Jeremy Chua, Erik K.R. Hanko, Andrew Yiakoumetti, Ruth A. Stoney, Jakub Chromy, Kris Niño G. Valdehuesa, Katherine A. Hollywood, Cunyu Yan, Eriko Takano, Rainer Breitling","doi":"10.1016/j.mec.2024.e00237","DOIUrl":null,"url":null,"abstract":"<div><p>Phenylpropenes are a class of natural products that are synthesised by a vast range of plant species and hold considerable promise in the flavour and fragrance industries. Many <em>in vitro</em> studies have been carried out to elucidate and characterise the enzymes responsible for the production of these volatile compounds. However, there is a scarcity of studies demonstrating the <em>in vivo</em> production of phenylpropenes in microbial cell factories. In this study, we engineered <em>Escherichia coli</em> to produce methylchavicol, methyleugenol and isoeugenol from their respective phenylacrylic acid precursors. We achieved this by extending and modifying a previously optimised heterologous pathway for the biosynthesis of chavicol and eugenol. We explored the potential of six <em>S</em>-adenosyl <span>l</span>-methionine (SAM)-dependent <em>O-</em>methyltransferases to produce methylchavicol and methyleugenol from chavicol and eugenol, respectively. Additionally, we examined two isoeugenol synthases for the production of isoeugenol from coniferyl acetate. The best-performing strains in this study were able to achieve titres of 13 mg L<sup>−1</sup> methylchavicol, 59 mg L<sup>−1</sup> methyleugenol and 361 mg L<sup>−1</sup> isoeugenol after feeding with their appropriate phenylacrylic acid substrates. We were able to further increase the methyleugenol titre to 117 mg L<sup>−1</sup> by supplementation with methionine to facilitate SAM recycling. Moreover, we report the biosynthesis of methylchavicol and methyleugenol from <span>l</span>-tyrosine through pathways involving six and eight enzymatic steps, respectively.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030124000063/pdfft?md5=80f39caf33089f97306dc16312a53f4d&pid=1-s2.0-S2214030124000063-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030124000063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phenylpropenes are a class of natural products that are synthesised by a vast range of plant species and hold considerable promise in the flavour and fragrance industries. Many in vitro studies have been carried out to elucidate and characterise the enzymes responsible for the production of these volatile compounds. However, there is a scarcity of studies demonstrating the in vivo production of phenylpropenes in microbial cell factories. In this study, we engineered Escherichia coli to produce methylchavicol, methyleugenol and isoeugenol from their respective phenylacrylic acid precursors. We achieved this by extending and modifying a previously optimised heterologous pathway for the biosynthesis of chavicol and eugenol. We explored the potential of six S-adenosyl l-methionine (SAM)-dependent O-methyltransferases to produce methylchavicol and methyleugenol from chavicol and eugenol, respectively. Additionally, we examined two isoeugenol synthases for the production of isoeugenol from coniferyl acetate. The best-performing strains in this study were able to achieve titres of 13 mg L−1 methylchavicol, 59 mg L−1 methyleugenol and 361 mg L−1 isoeugenol after feeding with their appropriate phenylacrylic acid substrates. We were able to further increase the methyleugenol titre to 117 mg L−1 by supplementation with methionine to facilitate SAM recycling. Moreover, we report the biosynthesis of methylchavicol and methyleugenol from l-tyrosine through pathways involving six and eight enzymatic steps, respectively.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.