CXCR3-independent role of CXCL10 in alveolar epithelial repair.

IF 3.6 2区 医学 Q1 PHYSIOLOGY American journal of physiology. Lung cellular and molecular physiology Pub Date : 2024-08-01 Epub Date: 2024-05-21 DOI:10.1152/ajplung.00301.2023
Yanli Zhang, Jiurong Liang, Jun Ye, Ningshan Liu, Paul W Noble, Dianhua Jiang
{"title":"CXCR3-independent role of CXCL10 in alveolar epithelial repair.","authors":"Yanli Zhang, Jiurong Liang, Jun Ye, Ningshan Liu, Paul W Noble, Dianhua Jiang","doi":"10.1152/ajplung.00301.2023","DOIUrl":null,"url":null,"abstract":"<p><p>The alveolar type II epithelial cells (AEC2s) act as stem cells in the lung for alveolar epithelial maintenance and repair. Chemokine C-X-C motif chemokine 10 (CXCL10) is expressed in injured tissues, modulating multiple cellular functions. AEC2s, previously reported to release chemokines to recruit leukocytes, were found in our study to secrete CXCL10 after bleomycin injury. We found that Sftpc-Cxcl10 transgenic mice were protected from bleomycin injury. The transgenic mice showed an increase in the AEC2 population in the lung by flow cytometry analysis. Both endogenous and exogenous CXCL10 promoted the colony formation efficiency of AEC2s in a three-dimensional (3-D) organoid growth assay. We identified that the regenerative effect of CXCL10 was CXCR3 independent using <i>Cxcr3</i>-deficient mice, but it was related to the TrkA pathway. Binding experiments showed that CXCL10 interacted with TrkA directly and reversibly. This study demonstrates a previously unidentified AEC2 autocrine signaling of CXCL10 to promote their regeneration and proliferation, probably involving a CXCR3-independent TrkA pathway.<b>NEW & NOTEWORTHY</b> CXCL10 may aid in lung injury recovery by promoting the proliferation of alveolar stem cells and using a distinct regulatory pathway from the classical one.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L160-L172"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00301.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The alveolar type II epithelial cells (AEC2s) act as stem cells in the lung for alveolar epithelial maintenance and repair. Chemokine C-X-C motif chemokine 10 (CXCL10) is expressed in injured tissues, modulating multiple cellular functions. AEC2s, previously reported to release chemokines to recruit leukocytes, were found in our study to secrete CXCL10 after bleomycin injury. We found that Sftpc-Cxcl10 transgenic mice were protected from bleomycin injury. The transgenic mice showed an increase in the AEC2 population in the lung by flow cytometry analysis. Both endogenous and exogenous CXCL10 promoted the colony formation efficiency of AEC2s in a three-dimensional (3-D) organoid growth assay. We identified that the regenerative effect of CXCL10 was CXCR3 independent using Cxcr3-deficient mice, but it was related to the TrkA pathway. Binding experiments showed that CXCL10 interacted with TrkA directly and reversibly. This study demonstrates a previously unidentified AEC2 autocrine signaling of CXCL10 to promote their regeneration and proliferation, probably involving a CXCR3-independent TrkA pathway.NEW & NOTEWORTHY CXCL10 may aid in lung injury recovery by promoting the proliferation of alveolar stem cells and using a distinct regulatory pathway from the classical one.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CXCL10 在肺泡上皮修复中的作用与 CXCR3 无关
肺泡 II 型上皮细胞(AEC2)是肺部的干细胞,负责肺泡上皮的维护和修复。趋化因子 CXCL10 在损伤组织中表达,可调节多种细胞功能。以前曾有报道称 AEC2 细胞释放趋化因子以招募白细胞,我们的研究发现它们在博莱霉素损伤后分泌 CXCL10。我们发现,Sftpc-Cxcl10 转基因小鼠可免受博莱霉素损伤。通过流式细胞术分析,转基因小鼠肺部的 AEC2 数量有所增加。在三维类器官生长试验中,内源性和外源性CXCL10都能促进AEC2的集落形成效率。我们利用Cxcr3缺陷小鼠发现,CXCL10的再生效应与CXCR3无关,但与TrkA通路有关。结合实验表明,CXCL10 能直接与 TrkA 发生可逆的相互作用。这项研究证明了一种之前未被发现的AEC2自分泌信号,即CXCL10促进其再生和增殖,可能涉及一种独立于CXCR3的TrkA通路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
期刊最新文献
Disruption of immune responses by type 1 diabetes exacerbates SARS-CoV-2 mediated lung injury. Eosinophils prevent diet-induced airway hyperresponsiveness in mice on a high-fat diet. Expression of Semaphorin3E/PlexinD1 in human airway smooth muscle cells of patients with COPD. Identification of FGFR4 as a regulator of myofibroblast differentiation in pulmonary fibrosis. Inference of alveolar capillary network connectivity from blood flow dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1