Davide Bizzotto, Mar Janna Dahl, Chiara Veneroni, Anna Lavizzari, Andrew Rebentisch, Elaine Dawson, Sydney Bowen, Kaitlin Zuspan, Bradley A Yoder, Kurt H Albertine, Raffaele L Dellacà
{"title":"Impact of neonatal noninvasive resuscitation strategies on lung mechanics, tracheal pressure, and tidal volume in preterm lambs.","authors":"Davide Bizzotto, Mar Janna Dahl, Chiara Veneroni, Anna Lavizzari, Andrew Rebentisch, Elaine Dawson, Sydney Bowen, Kaitlin Zuspan, Bradley A Yoder, Kurt H Albertine, Raffaele L Dellacà","doi":"10.1152/ajplung.00236.2022","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the relationship between three respiratory support approaches on lung volume recruitment during the first 2 h of postnatal life in preterm lambs. We estimated changes in lung aeration, measuring respiratory resistance and reactance by oscillometry at 5 Hz. We also measured intratracheal pressure in subsets of lambs. The first main finding is that sustained inflation (SI) applied noninvasively (Mask SI; <i>n</i> = 7) or invasively [endotracheal tube (ETT) SI; <i>n</i> = 6] led to similar rapid lung volume recruitment (∼6 min). In contrast, Mask continuous positive airway pressure (CPAP) without SI (<i>n</i> = 6) resuscitation took longer (∼30-45 min) to reach similar lung volume recruitment. The second main finding is that, in the first 15 min of postnatal life, the Mask CPAP without SI group closed their larynx during custom ventilator-driven expiration, leading to intratracheal positive end-expiratory pressure of ∼17 cmH<sub>2</sub>O (instead of 8 cmH<sub>2</sub>O provided by the ventilator). In contrast, the Mask SI group used the larynx to limit inspiratory pressure to ∼26 cmH<sub>2</sub>O (instead of 30 cmH<sub>2</sub>O provided by the ventilator). These different responses affected tidal volume, being larger in the Mask CPAP without SI group [8.4 mL/kg; 6.7-9.3 interquartile range (IQR)] compared to the Mask SI (5.0 mL/kg; 4.4-5.2 IQR) and ETT SI groups (3.3 mL/kg; 2.6-3.7 IQR). Distinct physiological responses suggest that spontaneous respiratory activity of the larynx of preterm lambs at birth can uncouple pressure applied by the ventilator to that applied to the lung, leading to unpredictable lung pressure and tidal volume delivery independently from the ventilator settings.<b>NEW & NOTEWORTHY</b> We compared invasive and noninvasive resuscitation on lambs at birth, including or not sustained inflation (SI). Lung volume recruitment was faster in those receiving SI. During noninvasive resuscitation, larynx modulation reduced tracheal pressure from that applied to the mask in lambs receiving SI, while it led to increased auto-positive end-expiratory pressure and very large tidal volumes in lambs not receiving SI. Our results highlight the need for individualizing pressures and monitoring tidal volumes during resuscitation at birth.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L203-L217"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00236.2022","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the relationship between three respiratory support approaches on lung volume recruitment during the first 2 h of postnatal life in preterm lambs. We estimated changes in lung aeration, measuring respiratory resistance and reactance by oscillometry at 5 Hz. We also measured intratracheal pressure in subsets of lambs. The first main finding is that sustained inflation (SI) applied noninvasively (Mask SI; n = 7) or invasively [endotracheal tube (ETT) SI; n = 6] led to similar rapid lung volume recruitment (∼6 min). In contrast, Mask continuous positive airway pressure (CPAP) without SI (n = 6) resuscitation took longer (∼30-45 min) to reach similar lung volume recruitment. The second main finding is that, in the first 15 min of postnatal life, the Mask CPAP without SI group closed their larynx during custom ventilator-driven expiration, leading to intratracheal positive end-expiratory pressure of ∼17 cmH2O (instead of 8 cmH2O provided by the ventilator). In contrast, the Mask SI group used the larynx to limit inspiratory pressure to ∼26 cmH2O (instead of 30 cmH2O provided by the ventilator). These different responses affected tidal volume, being larger in the Mask CPAP without SI group [8.4 mL/kg; 6.7-9.3 interquartile range (IQR)] compared to the Mask SI (5.0 mL/kg; 4.4-5.2 IQR) and ETT SI groups (3.3 mL/kg; 2.6-3.7 IQR). Distinct physiological responses suggest that spontaneous respiratory activity of the larynx of preterm lambs at birth can uncouple pressure applied by the ventilator to that applied to the lung, leading to unpredictable lung pressure and tidal volume delivery independently from the ventilator settings.NEW & NOTEWORTHY We compared invasive and noninvasive resuscitation on lambs at birth, including or not sustained inflation (SI). Lung volume recruitment was faster in those receiving SI. During noninvasive resuscitation, larynx modulation reduced tracheal pressure from that applied to the mask in lambs receiving SI, while it led to increased auto-positive end-expiratory pressure and very large tidal volumes in lambs not receiving SI. Our results highlight the need for individualizing pressures and monitoring tidal volumes during resuscitation at birth.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.