{"title":"Cost analyses for malaria molecular diagnosis for research planners in India and beyond.","authors":"Vandana Panwar, Shivani Bansal, Charu Chauhan, Abhinav Sinha","doi":"10.1080/14737159.2024.2356172","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Malaria elimination mandates early and accurate diagnosis of infection. Although malaria diagnosis is programmatically dependent on microscopy/RDTs, molecular diagnosis has much better diagnostic accuracy. Higher cost of molecular diagnoses is a recognized challenge for use at the point of care. Because funding is always a recognized constraint, we performed financial cost-analyses of available molecular platforms for better utilization of available budget.</p><p><strong>Methods: </strong>Two strategies were applied to deduce the cost per sample. Strategy 1 included recurring components (RC) in minimum pack size, and biologist's time whereas strategy 2 included only RC and non-recurring components and costs are calculated for sample sizes (1-1,000,000) to infer the sample size effect.</p><p><strong>Results: </strong>Spin column-based manual DNA extraction (US$ 3.93 per sample) is the lowest-cost method, followed by magnetic bead-based automated, semi-automated, and PCI-based manual method. Further, DNA extraction cost per sample via spin column-based manual method and semi-automated method decreases with an increase in sample size up to 10,000. Real-time PCRs are ~ 2-fold more economical than conventional PCR, regardless of sample size.</p><p><strong>Conclusions: </strong>This study is the first for malaria to estimate systematic molecular diagnosis financial costs. Kit-based and automated methods may replace conventional DNA extraction and amplification methods for a frugal high-throughput diagnosis.</p>","PeriodicalId":12113,"journal":{"name":"Expert Review of Molecular Diagnostics","volume":" ","pages":"549-559"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Molecular Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14737159.2024.2356172","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Malaria elimination mandates early and accurate diagnosis of infection. Although malaria diagnosis is programmatically dependent on microscopy/RDTs, molecular diagnosis has much better diagnostic accuracy. Higher cost of molecular diagnoses is a recognized challenge for use at the point of care. Because funding is always a recognized constraint, we performed financial cost-analyses of available molecular platforms for better utilization of available budget.
Methods: Two strategies were applied to deduce the cost per sample. Strategy 1 included recurring components (RC) in minimum pack size, and biologist's time whereas strategy 2 included only RC and non-recurring components and costs are calculated for sample sizes (1-1,000,000) to infer the sample size effect.
Results: Spin column-based manual DNA extraction (US$ 3.93 per sample) is the lowest-cost method, followed by magnetic bead-based automated, semi-automated, and PCI-based manual method. Further, DNA extraction cost per sample via spin column-based manual method and semi-automated method decreases with an increase in sample size up to 10,000. Real-time PCRs are ~ 2-fold more economical than conventional PCR, regardless of sample size.
Conclusions: This study is the first for malaria to estimate systematic molecular diagnosis financial costs. Kit-based and automated methods may replace conventional DNA extraction and amplification methods for a frugal high-throughput diagnosis.
期刊介绍:
Expert Review of Molecular Diagnostics (ISSN 1473-7159) publishes expert reviews of the latest advancements in the field of molecular diagnostics including the detection and monitoring of the molecular causes of disease that are being translated into groundbreaking diagnostic and prognostic technologies to be used in the clinical diagnostic setting.
Each issue of Expert Review of Molecular Diagnostics contains leading reviews on current and emerging topics relating to molecular diagnostics, subject to a rigorous peer review process; editorials discussing contentious issues in the field; diagnostic profiles featuring independent, expert evaluations of diagnostic tests; meeting reports of recent molecular diagnostics conferences and key paper evaluations featuring assessments of significant, recently published articles from specialists in molecular diagnostic therapy.
Expert Review of Molecular Diagnostics provides the forum for reporting the critical advances being made in this ever-expanding field, as well as the major challenges ahead in their clinical implementation. The journal delivers this information in concise, at-a-glance article formats: invaluable to a time-constrained community.