W.F. Cheng , X.Y. Liu , C. Tan , Q.R. Yao , J. Wang , G.H. Rao , H.Y. Zhou
{"title":"Experimental determination and thermodynamic calculation of phase equilibria in the Sm-Fe-B ternary system","authors":"W.F. Cheng , X.Y. Liu , C. Tan , Q.R. Yao , J. Wang , G.H. Rao , H.Y. Zhou","doi":"10.1016/j.calphad.2024.102706","DOIUrl":null,"url":null,"abstract":"<div><p>The phase equilibria of the Sm-Fe-B ternary system at 873 K and 1073 K were experimentally investigated by equilibrated alloy method using scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction (XRD). Four ternary intermetallic compounds, Sm<sub>2</sub>Fe<sub>14</sub>B with a Nd<sub>2</sub>Fe<sub>14</sub>B-type structure and space group P4<sub>2</sub>/mnm, Sm<sub>17</sub>(Fe<sub>4</sub>B<sub>4</sub>)<sub>15</sub> with a RE<sub>l.1</sub>Fe<sub>4</sub>B<sub>4</sub>-type structure and space group P4<sub>2</sub>/n, SmFeB<sub>4</sub> with a YCrB<sub>4</sub>-type structure and space group Pbam and Sm<sub>5</sub>Fe<sub>2</sub>B<sub>6</sub> with a Pr<sub>5</sub>Co<sub>2</sub>B<sub>6</sub>-type structure and space group <span><math><mi>R</mi><mover><mn>3</mn><mo>‾</mo></mover><mi>m</mi></math></span> , were confirmed by the SEM-EDS results and the XRD Rietveld refinements. The isothermal sections of this ternary system at 873 K and 1073 K were established. Furthermore, in the combination with the previous assessments of the Sm-Fe, Sm-B and Fe-B binary systems and the measured and reported experimental results, thermodynamic calculation of the Sm-Fe-B ternary system was performed using the CALPHAD method. The calculated isothermal sections at 873 K and 1073 K are in good agreement with the determined experimental results. Thermodynamic parameters of the Sm-Fe-B ternary system were obtained finally, which would provide a good basis for the development of a thermodynamic database of RE-Fe-B-based magnetic alloys.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"85 ","pages":"Article 102706"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591624000488","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The phase equilibria of the Sm-Fe-B ternary system at 873 K and 1073 K were experimentally investigated by equilibrated alloy method using scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction (XRD). Four ternary intermetallic compounds, Sm2Fe14B with a Nd2Fe14B-type structure and space group P42/mnm, Sm17(Fe4B4)15 with a REl.1Fe4B4-type structure and space group P42/n, SmFeB4 with a YCrB4-type structure and space group Pbam and Sm5Fe2B6 with a Pr5Co2B6-type structure and space group , were confirmed by the SEM-EDS results and the XRD Rietveld refinements. The isothermal sections of this ternary system at 873 K and 1073 K were established. Furthermore, in the combination with the previous assessments of the Sm-Fe, Sm-B and Fe-B binary systems and the measured and reported experimental results, thermodynamic calculation of the Sm-Fe-B ternary system was performed using the CALPHAD method. The calculated isothermal sections at 873 K and 1073 K are in good agreement with the determined experimental results. Thermodynamic parameters of the Sm-Fe-B ternary system were obtained finally, which would provide a good basis for the development of a thermodynamic database of RE-Fe-B-based magnetic alloys.
期刊介绍:
The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.