An Automated Data-Gathering Tool for Earth Observation CubeSats Classification

IF 1.3 4区 工程技术 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Latin America Transactions Pub Date : 2024-03-20 DOI:10.1109/TLA.2024.10534307
Alejandro Lopez-Telgie;Mario Quappe-Gutierrez;Walter Abrahão Dos Santos
{"title":"An Automated Data-Gathering Tool for Earth Observation CubeSats Classification","authors":"Alejandro Lopez-Telgie;Mario Quappe-Gutierrez;Walter Abrahão Dos Santos","doi":"10.1109/TLA.2024.10534307","DOIUrl":null,"url":null,"abstract":"This study presents an automated tool designed for the classification and analysis of Earth Observation CubeSats, with focus in the low Earth orbit (LEO) region (200-1,000 km altitude). Leveraging an integration of data from different reputable databases, the tool provides a detailed data repository which facilitates analysis of CubeSat deployment trends, configurations, and operational orbits, aiding in mission design. A key finding from our analysis is the pronounced concentration of CubeSats in certain LEO regions: Sun-Synchronus and ISS, with the United States as a leading contributor in CubeSat deployments. Moreover, the tool offers a comprehensive estimation of lifecycle costs associated with CubeSat missions, highlighting a trend of decreasing costs among major CubeSat developers such as Planet and Spire. This cost reduction trend is attributed to economies of scale, implementation of ground segment infrastructure, and vertical integration in the development of the satellites. By providing a detailed dataset, and classification of CubeSats, along with an analysis of cost trends, this research contributes valuable insights for the planning and cost optimization of future space missions. The findings underscore the growing commercial viability and strategic importance of CubeSats in the evolving landscape of Earth observation and new space.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":"22 6","pages":"451-459"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10534307","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10534307/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an automated tool designed for the classification and analysis of Earth Observation CubeSats, with focus in the low Earth orbit (LEO) region (200-1,000 km altitude). Leveraging an integration of data from different reputable databases, the tool provides a detailed data repository which facilitates analysis of CubeSat deployment trends, configurations, and operational orbits, aiding in mission design. A key finding from our analysis is the pronounced concentration of CubeSats in certain LEO regions: Sun-Synchronus and ISS, with the United States as a leading contributor in CubeSat deployments. Moreover, the tool offers a comprehensive estimation of lifecycle costs associated with CubeSat missions, highlighting a trend of decreasing costs among major CubeSat developers such as Planet and Spire. This cost reduction trend is attributed to economies of scale, implementation of ground segment infrastructure, and vertical integration in the development of the satellites. By providing a detailed dataset, and classification of CubeSats, along with an analysis of cost trends, this research contributes valuable insights for the planning and cost optimization of future space missions. The findings underscore the growing commercial viability and strategic importance of CubeSats in the evolving landscape of Earth observation and new space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于地球观测立方体卫星分类的自动数据收集工具
本研究提出了一种自动工具,用于对地球观测立方体卫星进行分类和分析,重点是低地球轨道(LEO)区域(200-1,000 公里高度)。通过整合来自不同知名数据库的数据,该工具提供了一个详细的数据存储库,有助于分析立方体卫星的部署趋势、配置和运行轨道,从而为任务设计提供帮助。我们分析的一个重要发现是立方体卫星明显集中在某些低地轨道区域:太阳同步轨道和国际空间站,其中美国是立方体卫星部署的主要贡献者。此外,该工具还对与立方体卫星任务相关的生命周期成本进行了全面估算,突出表明 Planet 和 Spire 等主要立方体卫星开发商的成本呈下降趋势。这种成本下降趋势归因于规模经济、地面段基础设施的实施以及卫星开发的垂直整合。本研究通过提供详细的数据集、立方体卫星分类以及成本趋势分析,为未来太空任务的规划和成本优化提供了有价值的见解。研究结果凸显了立方体卫星在不断发展的地球观测和新空间领域中日益增长的商业可行性和战略重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Latin America Transactions
IEEE Latin America Transactions COMPUTER SCIENCE, INFORMATION SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
3.50
自引率
7.70%
发文量
192
审稿时长
3-8 weeks
期刊介绍: IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.
期刊最新文献
Design and Validation of an IoT System for an Experimental Laboratory Microgrid Personalized Digital Instructor Based on Arduino for Buerger Exercises in Older Adults with Diabetes: Feasibility Study STAR-IRS Assisted Rate Splitting Multiple Access with Perfect and Imperfect CSI for 6G Communication Through the Youth Eyes: Training Depression Detection Algorithms with Eye Tracking Data Editorial 2025
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1