Observations of surface energy fluxes and meteorology in the seasonally snow-covered high-elevation East River Watershed during SPLASH, 2021–2023

IF 11.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Earth System Science Data Pub Date : 2024-05-21 DOI:10.5194/essd-2024-158
Christopher J. Cox, Janet M. Intrieri, Brian Butterworth, Gijs de Boer, Michael R. Gallagher, Jonathan Hamilton, Erik Hulm, Tilden Meyers, Sara M. Morris, Jackson Osborn, P. Ola G. Persson, Benjamin Schmatz, Matthew D. Shupe, James M. Wilczak
{"title":"Observations of surface energy fluxes and meteorology in the seasonally snow-covered high-elevation East River Watershed during SPLASH, 2021–2023","authors":"Christopher J. Cox, Janet M. Intrieri, Brian Butterworth, Gijs de Boer, Michael R. Gallagher, Jonathan Hamilton, Erik Hulm, Tilden Meyers, Sara M. Morris, Jackson Osborn, P. Ola G. Persson, Benjamin Schmatz, Matthew D. Shupe, James M. Wilczak","doi":"10.5194/essd-2024-158","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> From autumn 2021 through summer 2023, scientists from the National Oceanic and Atmospheric Administration (NOAA) and partners conducted the Study of Precipitation, the Lower Atmosphere, and Surface for Hydrometeorology (SPLASH) campaign in the East River Watershed of Colorado. One objective of SPLASH was to observe the transfer of energy between the atmosphere and the surface, which was done at several locations. Two remote sites were chosen that did not have access to power utilities. These were along the valley floor near the East River in the vicinity of the unincorporated town of Gothic, Colorado. Energy balance measurements were made at these locations using autonomous, single-level flux towers referred to as Atmospheric Surface Flux Stations (ASFS). The ASFS were deployed on 28 September 2021 at the “Kettle Ponds Annex” site and on 12 October 2021 at the “Avery Picnic” site and operated until 19 July and 21 June 2023, respectively. Measurements included basic meteorology; upward and downward longwave and shortwave radiative fluxes, and subsurface conductive flux, each at 1-minute resolution; 3-d winds from a sonic anemometer and H<sub>2</sub>O/CO<sub>2</sub> from an open-path gas analyser, both at 20 Hz from which sensible, latent heat, and CO<sub>2</sub> fluxes were derived; and profiles of soil properties in the upper 0.5 m (both sites) and temperature profiles through the snow (at Avery Picnic), each reported between 10 min and 6 hours. For most measurements, uptime was 96 % (Kettle Ponds) and 89 % (Avery Picnic), and collectively 1,184 days of data were obtained between the stations. The purpose of this manuscript is to document the ASFS deployment at SPLASH, the data acquisition and post-processing of measurements, and to serve as a guide for interested users of the data sets, which are archived under the Creative Commons 4.0 Public Domain licensing at Zenodo.","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":"38 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-158","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. From autumn 2021 through summer 2023, scientists from the National Oceanic and Atmospheric Administration (NOAA) and partners conducted the Study of Precipitation, the Lower Atmosphere, and Surface for Hydrometeorology (SPLASH) campaign in the East River Watershed of Colorado. One objective of SPLASH was to observe the transfer of energy between the atmosphere and the surface, which was done at several locations. Two remote sites were chosen that did not have access to power utilities. These were along the valley floor near the East River in the vicinity of the unincorporated town of Gothic, Colorado. Energy balance measurements were made at these locations using autonomous, single-level flux towers referred to as Atmospheric Surface Flux Stations (ASFS). The ASFS were deployed on 28 September 2021 at the “Kettle Ponds Annex” site and on 12 October 2021 at the “Avery Picnic” site and operated until 19 July and 21 June 2023, respectively. Measurements included basic meteorology; upward and downward longwave and shortwave radiative fluxes, and subsurface conductive flux, each at 1-minute resolution; 3-d winds from a sonic anemometer and H2O/CO2 from an open-path gas analyser, both at 20 Hz from which sensible, latent heat, and CO2 fluxes were derived; and profiles of soil properties in the upper 0.5 m (both sites) and temperature profiles through the snow (at Avery Picnic), each reported between 10 min and 6 hours. For most measurements, uptime was 96 % (Kettle Ponds) and 89 % (Avery Picnic), and collectively 1,184 days of data were obtained between the stations. The purpose of this manuscript is to document the ASFS deployment at SPLASH, the data acquisition and post-processing of measurements, and to serve as a guide for interested users of the data sets, which are archived under the Creative Commons 4.0 Public Domain licensing at Zenodo.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2021-2023 年 SPLASH 期间对季节性积雪高海拔东河流域地表能量通量和气象的观测
摘要从 2021 年秋季到 2023 年夏季,美国国家海洋和大气管理局(NOAA)的科学家及其合作伙伴在科罗拉多州东河流域开展了降水、低层大气和地表水文气象研究(SPLASH)活动。SPLASH 的目标之一是观测大气层和地表之间的能量转移。我们选择了两个没有电力设施的偏远地点。这两个地点位于科罗拉多州哥特镇附近靠近东河的谷底。在这些地点使用自主式单层通量塔进行了能量平衡测量,该通量塔被称为大气表面通量站(ASFS)。ASFS 分别于 2021 年 9 月 28 日在 "Kettle Ponds Annex "站点和 2021 年 10 月 12 日在 "Avery Picnic "站点部署,并分别运行至 2023 年 7 月 19 日和 6 月 21 日。测量内容包括:基本气象学;向上和向下的长波和短波辐射通量,以及地表下的传导通量,每项测量的分辨率均为 1 分钟;声波风速仪的三维风速和开路气体分析仪的 H2O/CO2 速度,两者的频率均为 20 Hz,并从中推导出显热、潜热和二氧化碳通量;以及上 0.5 米土壤特性剖面(两个站点)和雪地温度剖面(艾利野餐场),每项测量的报告时间均在 10 分钟至 6 小时之间。大多数测量的正常运行时间为 96%(Kettle Ponds)和 89%(Avery Picnic),两个站点之间总共获得了 1,184 天的数据。本手稿旨在记录 ASFS 在 SPLASH 的部署、数据采集和测量后处理,并为感兴趣的数据集用户提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth System Science Data
Earth System Science Data GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍: Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.
期刊最新文献
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard CCD-Rice: A long-term paddy rice distribution dataset in China at 30 m resolution SMOS-derived Antarctic thin sea ice thickness: data description and validation in the Weddell Sea Global Greenhouse Gas Reconciliation 2022 A daily reconstructed chlorophyll-a dataset in the South China Sea from MODIS using OI-SwinUnet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1