{"title":"Deep Learning-Derived Long-Term Dataset of Internal Waves in the Northern South China Sea from Satellite Imagery","authors":"Xudong Zhang, Xiaofeng Li","doi":"10.5194/essd-2024-124","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Internal waves (IWs) are an important ocean process in transmitting energy between multiscale ocean dynamics, making them a crucial oceanic phenomenon. The South China Sea (SCS) is renowned for its frequent large-amplitude IW activities, emphasizing the importance of collecting and analyzing extensive observational data. In this study, we present a comprehensive IW dataset covering the northern SCS covering 112.40–121.32° E and 18.32–23.19° N, spanning from 2000 to 2022 with a 250 m spatial resolution. The IW dataset comprises 3085 high-resolution MODIS true-color IW images paired with precise IW position information extracted from 15830 MODIS images using advanced deep learning techniques. IWs in the northern SCS are divided into four regions based on extracted IW spatial distributions, facilitating detailed analyses of IW characteristics, including spatial and temporal distributions across both the entire northern SCS and its sub-regions. Notably, we uncover typical \"double-peak\" distributions corresponding to the lunar day, underscoring IWs' close relationship with tides. Furthermore, we identify two IW-free silence regions attributed to underwater topography influences, indicating varied IW characteristics across regions and suggesting underlying mechanisms warrant further investigation. The constructed dataset holds significant potential for applications in studying IW-environment interactions, developing monitoring and prediction models, validating and enhancing numerical simulations, and serving as an educational resource to foster awareness and interest in IW research.","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":"15 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-124","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Internal waves (IWs) are an important ocean process in transmitting energy between multiscale ocean dynamics, making them a crucial oceanic phenomenon. The South China Sea (SCS) is renowned for its frequent large-amplitude IW activities, emphasizing the importance of collecting and analyzing extensive observational data. In this study, we present a comprehensive IW dataset covering the northern SCS covering 112.40–121.32° E and 18.32–23.19° N, spanning from 2000 to 2022 with a 250 m spatial resolution. The IW dataset comprises 3085 high-resolution MODIS true-color IW images paired with precise IW position information extracted from 15830 MODIS images using advanced deep learning techniques. IWs in the northern SCS are divided into four regions based on extracted IW spatial distributions, facilitating detailed analyses of IW characteristics, including spatial and temporal distributions across both the entire northern SCS and its sub-regions. Notably, we uncover typical "double-peak" distributions corresponding to the lunar day, underscoring IWs' close relationship with tides. Furthermore, we identify two IW-free silence regions attributed to underwater topography influences, indicating varied IW characteristics across regions and suggesting underlying mechanisms warrant further investigation. The constructed dataset holds significant potential for applications in studying IW-environment interactions, developing monitoring and prediction models, validating and enhancing numerical simulations, and serving as an educational resource to foster awareness and interest in IW research.
Earth System Science DataGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍:
Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.