{"title":"KAT8 enhances the resistance of lung cancer cells to cisplatin by acetylation of PKM2.","authors":"Zhenyu Li, Xiangji Lu, Jing Zhang, Tao Liu, Mingzhi Xu, Shuai Liu, Junguo Liang","doi":"10.1097/CAD.0000000000001622","DOIUrl":null,"url":null,"abstract":"<p><p>Cisplatin (CDDP)-based chemotherapy resistance is a major challenge for lung cancer treatment. PKM2 is the rate-limiting enzyme of glycolysis, which is associated with CDDP resistance. KAT8 is an acetyltransferase that regulates lung cancer progression. Thus, we aimed to explore whether KAT8 regulates PKM2 acetylation to participate in CDDP resistance. CDDP resistance was analyzed by CCK-8, flow cytometry and western blotting. To explore the regulation of KAT8 on PKM2, coimmunoprecipitation (Co-IP), immunofluorescence and immunoprecipitation followed by western blotting were performed. Glycolysis was determined using glucose consumption, lactate production, ATP level detection kits and extracellular acidification rate assay. We observed that KAT8 levels were downregulated in CDDP-treated A549 and PC9 cells. Interference with KAT8 inhibited cell viability, promoted apoptosis and upregulated PARP1 and cleaved-PARP1 levels of A549 cells treated with CDDP, suggesting the sensitivity to CDDP was enhanced, while KAT8 overexpression attenuated the CDDP sensitivity. Moreover, KAT8 interacted with PKM2 to promote the PKM2 K433 acetylation. PKM2 K433 mutated plasmids inhibited the si-KAT8-regulated cell viability, apoptosis and glycolysis compared with PKM2-WT. Besides, KAT8 reversed the inhibition of tumor growth caused by CDDP. In conclusion, KAT8-mediated PKM2 K433 acetylation was associated with the resistance of lung cancer cells to CDDP. The findings may provide a new idea for the treatment of CDDP-resistant lung cancer.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":" ","pages":"732-740"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11305626/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-Cancer Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CAD.0000000000001622","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cisplatin (CDDP)-based chemotherapy resistance is a major challenge for lung cancer treatment. PKM2 is the rate-limiting enzyme of glycolysis, which is associated with CDDP resistance. KAT8 is an acetyltransferase that regulates lung cancer progression. Thus, we aimed to explore whether KAT8 regulates PKM2 acetylation to participate in CDDP resistance. CDDP resistance was analyzed by CCK-8, flow cytometry and western blotting. To explore the regulation of KAT8 on PKM2, coimmunoprecipitation (Co-IP), immunofluorescence and immunoprecipitation followed by western blotting were performed. Glycolysis was determined using glucose consumption, lactate production, ATP level detection kits and extracellular acidification rate assay. We observed that KAT8 levels were downregulated in CDDP-treated A549 and PC9 cells. Interference with KAT8 inhibited cell viability, promoted apoptosis and upregulated PARP1 and cleaved-PARP1 levels of A549 cells treated with CDDP, suggesting the sensitivity to CDDP was enhanced, while KAT8 overexpression attenuated the CDDP sensitivity. Moreover, KAT8 interacted with PKM2 to promote the PKM2 K433 acetylation. PKM2 K433 mutated plasmids inhibited the si-KAT8-regulated cell viability, apoptosis and glycolysis compared with PKM2-WT. Besides, KAT8 reversed the inhibition of tumor growth caused by CDDP. In conclusion, KAT8-mediated PKM2 K433 acetylation was associated with the resistance of lung cancer cells to CDDP. The findings may provide a new idea for the treatment of CDDP-resistant lung cancer.
期刊介绍:
Anti-Cancer Drugs reports both clinical and experimental results related to anti-cancer drugs, and welcomes contributions on anti-cancer drug design, drug delivery, pharmacology, hormonal and biological modalities and chemotherapy evaluation. An internationally refereed journal devoted to the fast publication of innovative investigations on therapeutic agents against cancer, Anti-Cancer Drugs aims to stimulate and report research on both toxic and non-toxic anti-cancer agents. Consequently, the scope on the journal will cover both conventional cytotoxic chemotherapy and hormonal or biological response modalities such as interleukins and immunotherapy. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.