Alvaro Assis de Souza, Andrew P Stubbs, Dennis A Hesselink, Carla C Baan, Karin Boer
{"title":"Cherry on Top or Real Need? A Review of Explainable Machine Learning in Kidney Transplantation.","authors":"Alvaro Assis de Souza, Andrew P Stubbs, Dennis A Hesselink, Carla C Baan, Karin Boer","doi":"10.1097/TP.0000000000005063","DOIUrl":null,"url":null,"abstract":"<p><p>Research on solid organ transplantation has taken advantage of the substantial acquisition of medical data and the use of artificial intelligence (AI) and machine learning (ML) to answer diagnostic, prognostic, and therapeutic questions for many years. Nevertheless, despite the question of whether AI models add value to traditional modeling approaches, such as regression models, their \"black box\" nature is one of the factors that have hindered the translation from research to clinical practice. Several techniques that make such models understandable to humans were developed with the promise of increasing transparency in the support of medical decision-making. These techniques should help AI to close the gap between theory and practice by yielding trust in the model by doctors and patients, allowing model auditing, and facilitating compliance with emergent AI regulations. But is this also happening in the field of kidney transplantation? This review reports the use and explanation of \"black box\" models to diagnose and predict kidney allograft rejection, delayed graft function, graft failure, and other related outcomes after kidney transplantation. In particular, we emphasize the discussion on the need (or not) to explain ML models for biological discovery and clinical implementation in kidney transplantation. We also discuss promising future research paths for these computational tools.</p>","PeriodicalId":23316,"journal":{"name":"Transplantation","volume":" ","pages":"123-132"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/TP.0000000000005063","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Research on solid organ transplantation has taken advantage of the substantial acquisition of medical data and the use of artificial intelligence (AI) and machine learning (ML) to answer diagnostic, prognostic, and therapeutic questions for many years. Nevertheless, despite the question of whether AI models add value to traditional modeling approaches, such as regression models, their "black box" nature is one of the factors that have hindered the translation from research to clinical practice. Several techniques that make such models understandable to humans were developed with the promise of increasing transparency in the support of medical decision-making. These techniques should help AI to close the gap between theory and practice by yielding trust in the model by doctors and patients, allowing model auditing, and facilitating compliance with emergent AI regulations. But is this also happening in the field of kidney transplantation? This review reports the use and explanation of "black box" models to diagnose and predict kidney allograft rejection, delayed graft function, graft failure, and other related outcomes after kidney transplantation. In particular, we emphasize the discussion on the need (or not) to explain ML models for biological discovery and clinical implementation in kidney transplantation. We also discuss promising future research paths for these computational tools.
期刊介绍:
The official journal of The Transplantation Society, and the International Liver Transplantation Society, Transplantation is published monthly and is the most cited and influential journal in the field, with more than 25,000 citations per year.
Transplantation has been the trusted source for extensive and timely coverage of the most important advances in transplantation for over 50 years. The Editors and Editorial Board are an international group of research and clinical leaders that includes many pioneers of the field, representing a diverse range of areas of expertise. This capable editorial team provides thoughtful and thorough peer review, and delivers rapid, careful and insightful editorial evaluation of all manuscripts submitted to the journal.
Transplantation is committed to rapid review and publication. The journal remains competitive with a time to first decision of fewer than 21 days. Transplantation was the first in the field to offer CME credit to its peer reviewers for reviews completed.
The journal publishes original research articles in original clinical science and original basic science. Short reports bring attention to research at the forefront of the field. Other areas covered include cell therapy and islet transplantation, immunobiology and genomics, and xenotransplantation.