Ryan Smith, Samuel Taylor, Jennifer L Stewart, Salvador M Guinjoan, Maria Ironside, Namik Kirlic, Hamed Ekhtiari, Evan J White, Haixia Zheng, Rayus Kuplicki, Martin P Paulus
{"title":"Slower Learning Rates from Negative Outcomes in Substance Use Disorder over a 1-Year Period and Their Potential Predictive Utility.","authors":"Ryan Smith, Samuel Taylor, Jennifer L Stewart, Salvador M Guinjoan, Maria Ironside, Namik Kirlic, Hamed Ekhtiari, Evan J White, Haixia Zheng, Rayus Kuplicki, Martin P Paulus","doi":"10.5334/cpsy.85","DOIUrl":null,"url":null,"abstract":"<p><p>Computational modelling is a promising approach to parse dysfunctional cognitive processes in substance use disorders (SUDs), but it is unclear how much these processes change during the recovery period. We assessed 1-year follow-up data on a sample of treatment-seeking individuals with one or more SUDs (alcohol, cannabis, sedatives, stimulants, hallucinogens, and/or opioids; <i>N</i> = 83) that were previously assessed at baseline within a prior computational modelling study. Relative to healthy controls (HCs; <i>N</i> = 48), these participants were found at baseline to show altered learning rates and less precise action selection while completing an explore-exploit decision-making task. Here we replicated these analyses when these individuals returned and re-performed the task 1 year later to assess the stability of baseline differences. We also examined whether baseline modelling measures could predict symptoms at follow-up. Bayesian and frequentist analyses indicated that: (a) group differences in learning rates were stable over time (posterior probability = 1); and (b) intra-class correlations (ICCs) between model parameters at baseline and follow-up were significant and ranged from small to moderate (.25 ≤ ICCs ≤ .54). Exploratory analyses also suggested that learning rates and/or information-seeking values at baseline were associated with substance use severity at 1-year follow-up in stimulant and opioid users (.36 ≤ <i>r</i>s ≤ .43). These findings suggest that learning dysfunctions are moderately stable during recovery and could correspond to trait-like vulnerability factors. In addition, computational measures at baseline had some predictive value for changes in substance use severity over time and could be clinically informative.</p>","PeriodicalId":72664,"journal":{"name":"Computational psychiatry (Cambridge, Mass.)","volume":"6 1","pages":"117-141"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104312/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational psychiatry (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/cpsy.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Computational modelling is a promising approach to parse dysfunctional cognitive processes in substance use disorders (SUDs), but it is unclear how much these processes change during the recovery period. We assessed 1-year follow-up data on a sample of treatment-seeking individuals with one or more SUDs (alcohol, cannabis, sedatives, stimulants, hallucinogens, and/or opioids; N = 83) that were previously assessed at baseline within a prior computational modelling study. Relative to healthy controls (HCs; N = 48), these participants were found at baseline to show altered learning rates and less precise action selection while completing an explore-exploit decision-making task. Here we replicated these analyses when these individuals returned and re-performed the task 1 year later to assess the stability of baseline differences. We also examined whether baseline modelling measures could predict symptoms at follow-up. Bayesian and frequentist analyses indicated that: (a) group differences in learning rates were stable over time (posterior probability = 1); and (b) intra-class correlations (ICCs) between model parameters at baseline and follow-up were significant and ranged from small to moderate (.25 ≤ ICCs ≤ .54). Exploratory analyses also suggested that learning rates and/or information-seeking values at baseline were associated with substance use severity at 1-year follow-up in stimulant and opioid users (.36 ≤ rs ≤ .43). These findings suggest that learning dysfunctions are moderately stable during recovery and could correspond to trait-like vulnerability factors. In addition, computational measures at baseline had some predictive value for changes in substance use severity over time and could be clinically informative.