Being an influencer is hard: The complexity of influence maximization in temporal graphs with a fixed source

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Information and Computation Pub Date : 2024-05-08 DOI:10.1016/j.ic.2024.105171
Argyrios Deligkas , Michelle Döring , Eduard Eiben , Tiger-Lily Goldsmith , George Skretas
{"title":"Being an influencer is hard: The complexity of influence maximization in temporal graphs with a fixed source","authors":"Argyrios Deligkas ,&nbsp;Michelle Döring ,&nbsp;Eduard Eiben ,&nbsp;Tiger-Lily Goldsmith ,&nbsp;George Skretas","doi":"10.1016/j.ic.2024.105171","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the influence maximization problem over a temporal graph. We deviate from the standard model of influence maximization, where the goal is to choose the most influential vertices. In our model, we are given a fixed vertex and the goal is to find the best time steps to transmit so that the influence of this vertex is maximized. We frame this problem as a spreading process that follows a variant of the susceptible-infected-susceptible (SIS) model and focus on four objective functions. In the <span>MaxSpread</span> objective, the goal is to maximize the number of vertices that get infected at least once. In <span>MaxViral</span> and <span>MaxViralTstep</span>, the goal is to maximize the number of vertices that are infected at the same time step and at a given time step, respectively. Finally, in <span>MinNonViralTime</span>, the goal is to maximize the number of vertices that are infected in every <em>d</em> time-step window.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"299 ","pages":"Article 105171"},"PeriodicalIF":1.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000361","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the influence maximization problem over a temporal graph. We deviate from the standard model of influence maximization, where the goal is to choose the most influential vertices. In our model, we are given a fixed vertex and the goal is to find the best time steps to transmit so that the influence of this vertex is maximized. We frame this problem as a spreading process that follows a variant of the susceptible-infected-susceptible (SIS) model and focus on four objective functions. In the MaxSpread objective, the goal is to maximize the number of vertices that get infected at least once. In MaxViral and MaxViralTstep, the goal is to maximize the number of vertices that are infected at the same time step and at a given time step, respectively. Finally, in MinNonViralTime, the goal is to maximize the number of vertices that are infected in every d time-step window.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
成为有影响力的人很困难:具有固定来源的时序图中影响力最大化的复杂性
我们考虑的是时序图上的影响力最大化问题。我们偏离了影响力最大化的标准模型,在该模型中,我们的目标是选择影响力最大的顶点。在我们的模型中,我们给定了一个固定的顶点,目标是找到最佳的传播时间步骤,从而使该顶点的影响力最大化。我们将这个问题设定为一个传播过程,遵循易感-感染-易感(SIS)模型的变体,并重点关注四个目标函数。在 MaxSpread 目标中,目标是使至少被感染一次的顶点数量最大化。在 MaxViral 和 MaxViralTstep 中,目标分别是在同一时间步长和给定时间步长内受感染的顶点数量最大化。最后,在 MinNonViralTime 中,目标是最大化每 d 个时间步窗口中受感染的顶点数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
期刊最新文献
Total conditional complexity of certain objects Corrigendum to “On the equivalence of uniform key agreement and sequential composition insecurity” [Information and Computation 307 (2025) 105365] A perfect matching reciprocity method for embedding multiple hypercubes in an augmented cube: Application to Hamiltonian decomposition Improved approximations for the capacitated vehicle routing problem with fixed capacity Deterministic pushdown automata with translucent input letters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1