Near-wall flow deconstruction via mapping and polynomial fit

IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY International Journal of Engineering Science Pub Date : 2024-05-21 DOI:10.1016/j.ijengsci.2024.104090
Vahid Goodarzi Ardakani , Alberto M. Gambaruto
{"title":"Near-wall flow deconstruction via mapping and polynomial fit","authors":"Vahid Goodarzi Ardakani ,&nbsp;Alberto M. Gambaruto","doi":"10.1016/j.ijengsci.2024.104090","DOIUrl":null,"url":null,"abstract":"<div><p>A mapping technique for enhancing the visualisation and analysis of the flow structure in regions near the wall is presented. After identifying a near-wall region of interest, the output of the proposed mapping technique is an analytical expression of the flow variables, satisfying the governing PDEs and boundary conditions, on a stencil of standardised morphology.</p><p>The approach firstly involves selecting a local surface region of interest from the computational domain to be mapped. Subsequently a structured mesh of arbitrary height on top of the cropped surface is generated, thus forming the target volume region, which is termed the <em>physical space</em>. The solution data comprising of flow properties such as velocity and pressure from the computational domain is interpolated onto the physical space. The physical space and the data are consequently mapped onto an unwrapped domain with standard shape, termed the <em>mapped space</em>. For simplicity, the mapped space is chosen here to be a cuboid. Finally, the data is expressed as a best fit polynomial, satisfying the governing PDEs and boundary conditions.</p><p>The method is validated by direct pointwise comparison and from the velocity streamlines mapped from the physical space, for a set of test problems. The mapping technique effectiveness is demonstrated firstly on a 90 degree bend pipe as a benchmark investigation and subsequently on a nasal cavity anatomy. For the latter, three scenarios covering different flow structures in the near-wall region are scrutinised, demonstrating the ability of the techniques proposed to uncover the details of the near-wall flow in complex physiological flows. The regions of interest can be identified using near-wall measures such as wall shear stress, shear lines, and wall shear stress critical points.</p><p>The mapping technique has potential applications in the fields of fluid dynamics and specifically near-wall flows, as the interface region describing the dynamics of exchanges. It is furthermore capable of inferring the velocity field from reduced data available to enhance the use of deep learning or regression methods.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"201 ","pages":"Article 104090"},"PeriodicalIF":5.7000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524000740/pdfft?md5=4f31e7f643b7eccec65b2c5b8d31c7a1&pid=1-s2.0-S0020722524000740-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524000740","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A mapping technique for enhancing the visualisation and analysis of the flow structure in regions near the wall is presented. After identifying a near-wall region of interest, the output of the proposed mapping technique is an analytical expression of the flow variables, satisfying the governing PDEs and boundary conditions, on a stencil of standardised morphology.

The approach firstly involves selecting a local surface region of interest from the computational domain to be mapped. Subsequently a structured mesh of arbitrary height on top of the cropped surface is generated, thus forming the target volume region, which is termed the physical space. The solution data comprising of flow properties such as velocity and pressure from the computational domain is interpolated onto the physical space. The physical space and the data are consequently mapped onto an unwrapped domain with standard shape, termed the mapped space. For simplicity, the mapped space is chosen here to be a cuboid. Finally, the data is expressed as a best fit polynomial, satisfying the governing PDEs and boundary conditions.

The method is validated by direct pointwise comparison and from the velocity streamlines mapped from the physical space, for a set of test problems. The mapping technique effectiveness is demonstrated firstly on a 90 degree bend pipe as a benchmark investigation and subsequently on a nasal cavity anatomy. For the latter, three scenarios covering different flow structures in the near-wall region are scrutinised, demonstrating the ability of the techniques proposed to uncover the details of the near-wall flow in complex physiological flows. The regions of interest can be identified using near-wall measures such as wall shear stress, shear lines, and wall shear stress critical points.

The mapping technique has potential applications in the fields of fluid dynamics and specifically near-wall flows, as the interface region describing the dynamics of exchanges. It is furthermore capable of inferring the velocity field from reduced data available to enhance the use of deep learning or regression methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过映射和多项式拟合解构近壁流
本文提出了一种映射技术,用于增强近壁区域流动结构的可视化和分析。在确定了感兴趣的近壁区域后,所提出的映射技术的输出结果是在标准化形态的模版上对流动变量进行分析表达,并满足相关的 PDE 和边界条件。随后,在裁剪过的表面上生成任意高度的结构网格,从而形成目标体积区域,即物理空间。由计算域中的流速和压力等流动属性组成的求解数据被插值到物理空间上。物理空间和数据随后被映射到一个具有标准形状的未包裹域上,称为映射空间。为简单起见,这里选择的映射空间为立方体。最后,数据以最佳拟合多项式的形式表示,并满足相关的 PDE 和边界条件。通过直接点对点比较和从物理空间映射出的速度流线,对一组测试问题验证了该方法。映射技术的有效性首先在作为基准研究的 90 度弯管上得到了验证,随后在鼻腔解剖图上得到了验证。对于后者,对近壁区不同流动结构的三种情况进行了仔细研究,展示了所提出的技术揭示复杂生理流动中近壁流动细节的能力。利用近壁测量值,如壁剪应力、剪切线和壁剪应力临界点,可以确定感兴趣的区域。此外,它还能从减少的可用数据中推断速度场,以加强深度学习或回归方法的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Engineering Science
International Journal of Engineering Science 工程技术-工程:综合
CiteScore
11.80
自引率
16.70%
发文量
86
审稿时长
45 days
期刊介绍: The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome. The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process. Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.
期刊最新文献
Nonlinear elastic metafoundation as a model for adhesive micropatterned elastic interfaces Predictions of local stress heterogeneities within fibre-reinforced laminated plates Exploring the impact of thermal fluctuations on continuous models of adhesion A complementary energy-based constitutive model for the Mullins effect Propagation of elastic waves in a fluid-filled cylindrical cavity located in a poroelastic medium: The influence of surface tension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1