{"title":"Near-wall flow deconstruction via mapping and polynomial fit","authors":"Vahid Goodarzi Ardakani , Alberto M. Gambaruto","doi":"10.1016/j.ijengsci.2024.104090","DOIUrl":null,"url":null,"abstract":"<div><p>A mapping technique for enhancing the visualisation and analysis of the flow structure in regions near the wall is presented. After identifying a near-wall region of interest, the output of the proposed mapping technique is an analytical expression of the flow variables, satisfying the governing PDEs and boundary conditions, on a stencil of standardised morphology.</p><p>The approach firstly involves selecting a local surface region of interest from the computational domain to be mapped. Subsequently a structured mesh of arbitrary height on top of the cropped surface is generated, thus forming the target volume region, which is termed the <em>physical space</em>. The solution data comprising of flow properties such as velocity and pressure from the computational domain is interpolated onto the physical space. The physical space and the data are consequently mapped onto an unwrapped domain with standard shape, termed the <em>mapped space</em>. For simplicity, the mapped space is chosen here to be a cuboid. Finally, the data is expressed as a best fit polynomial, satisfying the governing PDEs and boundary conditions.</p><p>The method is validated by direct pointwise comparison and from the velocity streamlines mapped from the physical space, for a set of test problems. The mapping technique effectiveness is demonstrated firstly on a 90 degree bend pipe as a benchmark investigation and subsequently on a nasal cavity anatomy. For the latter, three scenarios covering different flow structures in the near-wall region are scrutinised, demonstrating the ability of the techniques proposed to uncover the details of the near-wall flow in complex physiological flows. The regions of interest can be identified using near-wall measures such as wall shear stress, shear lines, and wall shear stress critical points.</p><p>The mapping technique has potential applications in the fields of fluid dynamics and specifically near-wall flows, as the interface region describing the dynamics of exchanges. It is furthermore capable of inferring the velocity field from reduced data available to enhance the use of deep learning or regression methods.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"201 ","pages":"Article 104090"},"PeriodicalIF":5.7000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524000740/pdfft?md5=4f31e7f643b7eccec65b2c5b8d31c7a1&pid=1-s2.0-S0020722524000740-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524000740","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A mapping technique for enhancing the visualisation and analysis of the flow structure in regions near the wall is presented. After identifying a near-wall region of interest, the output of the proposed mapping technique is an analytical expression of the flow variables, satisfying the governing PDEs and boundary conditions, on a stencil of standardised morphology.
The approach firstly involves selecting a local surface region of interest from the computational domain to be mapped. Subsequently a structured mesh of arbitrary height on top of the cropped surface is generated, thus forming the target volume region, which is termed the physical space. The solution data comprising of flow properties such as velocity and pressure from the computational domain is interpolated onto the physical space. The physical space and the data are consequently mapped onto an unwrapped domain with standard shape, termed the mapped space. For simplicity, the mapped space is chosen here to be a cuboid. Finally, the data is expressed as a best fit polynomial, satisfying the governing PDEs and boundary conditions.
The method is validated by direct pointwise comparison and from the velocity streamlines mapped from the physical space, for a set of test problems. The mapping technique effectiveness is demonstrated firstly on a 90 degree bend pipe as a benchmark investigation and subsequently on a nasal cavity anatomy. For the latter, three scenarios covering different flow structures in the near-wall region are scrutinised, demonstrating the ability of the techniques proposed to uncover the details of the near-wall flow in complex physiological flows. The regions of interest can be identified using near-wall measures such as wall shear stress, shear lines, and wall shear stress critical points.
The mapping technique has potential applications in the fields of fluid dynamics and specifically near-wall flows, as the interface region describing the dynamics of exchanges. It is furthermore capable of inferring the velocity field from reduced data available to enhance the use of deep learning or regression methods.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.