Extended Bose–Einstein condensate dark matter in f(Q) gravity

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS General Relativity and Gravitation Pub Date : 2024-05-22 DOI:10.1007/s10714-024-03247-3
Aaqid Bhat, Raja Solanki, P. K. Sahoo
{"title":"Extended Bose–Einstein condensate dark matter in f(Q) gravity","authors":"Aaqid Bhat,&nbsp;Raja Solanki,&nbsp;P. K. Sahoo","doi":"10.1007/s10714-024-03247-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we attempt to explore the dark sector of the universe i.e. dark matter and dark energy, where the dark energy components are related to the modified <i>f</i>(<i>Q</i>) Lagrangian, particularly a power law function <span>\\(f(Q)= \\gamma \\left( \\frac{Q}{Q_0}\\right) ^n\\)</span>, while the dark matter component is described by the Extended Bose–Einstein Condensate (EBEC) equation of state for dark matter, specifically, <span>\\(p = \\alpha \\rho + \\beta \\rho ^2\\)</span>. We find the corresponding Friedmann-like equations and the continuity equation for both dark components along with an interacting term, specifically <span>\\(\\mathcal {Q} = 3b^2H \\rho \\)</span>, which signifies the energy exchange between the dark sector of the universe. Further, we derive the analytical expression of the Hubble function, and then we find the best-fit values of free parameters utilizing the Bayesian analysis to estimate the posterior probability and the Markov Chain Monte Carlo (MCMC) sampling technique corresponding to CC+Pantheon+SH0ES samples. In addition, to examine the robustness of our MCMC analysis, we perform a statistical assessment using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). Further from the evolutionary profile of the deceleration parameter and the energy density, we obtain a transition from the decelerated epoch to the accelerated expansion phase, with the present deceleration parameter value as <span>\\(q(z=0)=q_0=-0.56^{+0.04}_{-0.03}\\)</span> (<span>\\(68 \\%\\)</span> confidence limit), that is quite consistent with cosmological observations. In addition, we find the expected positive behavior of the effective energy density. Finally, by examining the sound speed parameter, we find that the assumed theoretical <i>f</i>(<i>Q</i>) model is thermodynamically stable.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03247-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we attempt to explore the dark sector of the universe i.e. dark matter and dark energy, where the dark energy components are related to the modified f(Q) Lagrangian, particularly a power law function \(f(Q)= \gamma \left( \frac{Q}{Q_0}\right) ^n\), while the dark matter component is described by the Extended Bose–Einstein Condensate (EBEC) equation of state for dark matter, specifically, \(p = \alpha \rho + \beta \rho ^2\). We find the corresponding Friedmann-like equations and the continuity equation for both dark components along with an interacting term, specifically \(\mathcal {Q} = 3b^2H \rho \), which signifies the energy exchange between the dark sector of the universe. Further, we derive the analytical expression of the Hubble function, and then we find the best-fit values of free parameters utilizing the Bayesian analysis to estimate the posterior probability and the Markov Chain Monte Carlo (MCMC) sampling technique corresponding to CC+Pantheon+SH0ES samples. In addition, to examine the robustness of our MCMC analysis, we perform a statistical assessment using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). Further from the evolutionary profile of the deceleration parameter and the energy density, we obtain a transition from the decelerated epoch to the accelerated expansion phase, with the present deceleration parameter value as \(q(z=0)=q_0=-0.56^{+0.04}_{-0.03}\) (\(68 \%\) confidence limit), that is quite consistent with cosmological observations. In addition, we find the expected positive behavior of the effective energy density. Finally, by examining the sound speed parameter, we find that the assumed theoretical f(Q) model is thermodynamically stable.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
f(Q) 引力下的扩展玻色-爱因斯坦凝聚暗物质
在本文中,我们试图探索宇宙的暗部,即暗物质和暗能量。暗物质和暗能量,其中暗能量成分与修正的 f(Q) 拉格朗日有关,特别是幂律函数 \(f(Q)= \gamma \left( \frac{Q}{Q_0}\right) ^n\),而暗物质成分则由暗物质的扩展玻色-爱因斯坦凝结物(EBEC)状态方程来描述,特别是 \(p = \alpha \rho + \beta \rho ^2\)。我们为两个暗物质成分找到了相应的弗里德曼方程(Friedmann-like equations)和连续性方程(continuity equation),以及一个相互作用项,具体地说,\(\mathcal {Q} = 3b^2H \rho \),它表示宇宙暗部门之间的能量交换。此外,我们还推导出了哈勃函数的解析表达式,然后利用贝叶斯分析估计后验概率和马尔可夫链蒙特卡罗(MCMC)采样技术,找到了与CC+Pantheon+SH0ES样本相对应的自由参数的最佳拟合值。此外,为了检验 MCMC 分析的稳健性,我们使用 Akaike 信息准则(AIC)和贝叶斯信息准则(BIC)进行了统计评估。进一步从减速参数和能量密度的演化曲线中,我们得到了一个从减速纪到加速膨胀阶段的过渡,目前的减速参数值为(q(z=0)=q_0=-0.56^{+0.04}_{-0.03}\)((68%\)置信限),这与宇宙学观测结果相当一致。此外,我们还发现了有效能量密度的预期正行为。最后,通过研究声速参数,我们发现假定的理论 f(Q) 模型在热力学上是稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
期刊最新文献
Differential curvature invariants and event horizon detection for accelerating Kerr–Newman black holes in (anti-)de Sitter spacetime Kaluza–Klein bubble with massive scalar field Black holes beyond General Relativity Same as ever: looking for (in)variants in the black holes landscape Cosmic evolution of Bianchi III model within Born-Infeld f(R) gravity theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1