A generalization of the Hawking black hole area theorem

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS General Relativity and Gravitation Pub Date : 2024-05-21 DOI:10.1007/s10714-024-03245-5
Eleni-Alexandra Kontou, Veronica Sacchi
{"title":"A generalization of the Hawking black hole area theorem","authors":"Eleni-Alexandra Kontou,&nbsp;Veronica Sacchi","doi":"10.1007/s10714-024-03245-5","DOIUrl":null,"url":null,"abstract":"<div><p>Hawking’s black hole area theorem was proven using the null energy condition (NEC), a pointwise condition violated by quantum fields. The violation of the NEC is usually cited as the reason that black hole evaporation is allowed in the context of semiclassical gravity. Here we provide two generalizations of the classical black hole area theorem: first, a proof of the original theorem with an averaged condition, the weakest possible energy condition to prove the theorem using focusing of null geodesics. Second, a proof of an area-type result that allows for the shrinking of the black hole horizon but provides a bound on it. This bound can be translated to a bound on the black hole evaporation rate using a condition inspired from quantum energy inequalities. Finally, we show how our bound can be applied to two cases that violate classical energy conditions.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-024-03245-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03245-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Hawking’s black hole area theorem was proven using the null energy condition (NEC), a pointwise condition violated by quantum fields. The violation of the NEC is usually cited as the reason that black hole evaporation is allowed in the context of semiclassical gravity. Here we provide two generalizations of the classical black hole area theorem: first, a proof of the original theorem with an averaged condition, the weakest possible energy condition to prove the theorem using focusing of null geodesics. Second, a proof of an area-type result that allows for the shrinking of the black hole horizon but provides a bound on it. This bound can be translated to a bound on the black hole evaporation rate using a condition inspired from quantum energy inequalities. Finally, we show how our bound can be applied to two cases that violate classical energy conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
霍金黑洞面积定理的一般化
霍金的黑洞面积定理是利用空能量条件(NEC)证明的,这是量子场违反的一个点条件。违反 NEC 通常被认为是半经典引力允许黑洞蒸发的原因。在此,我们对经典黑洞面积定理进行了两方面的概括:首先,用平均条件证明了原始定理,即用空大地线聚焦证明定理的最弱能量条件。其次,证明允许黑洞视界缩小但提供了一个约束的面积型结果。利用量子能量不等式的启发条件,这个约束可以转化为黑洞蒸发率的约束。最后,我们展示了如何将我们的约束应用于违反经典能量条件的两种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
期刊最新文献
Joule-thomson expansion of vanished cooling region for five-dimensional neutral Gauss-Bonnet AdS black hole GUP deformed background dynamics of phantom field Role of dynamical vacuum energy in the closed universe: implications for bouncing scenario Novel approach to solving Schwarzschild black hole perturbation equations via physics informed neural networks Height-function-based 4D reference metrics for hyperboloidal evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1