{"title":"N6-Methyladenosine Demethylase ALKBH5 Promotes Pyroptosis by Modulating PTBP1 mRNA Stability in LPS-Induced Myocardial Dysfunction.","authors":"Min Liu, Xiyun Chen","doi":"10.6515/ACS.202405_40(3).20240127A","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to investigate the mechanism by which alkB homolog 5 (ALKBH5) regulates polypyrimidine tract-binding protein 1 (PTBP1) to mediate cardiomyocyte pyroptosis in sepsis-induced myocardial injury.</p><p><strong>Methods: </strong>Lipopolysaccharide (LPS)-exposed H9C2 cell and rat models were established to mimic septic myocardial injury both <i>in vitro</i> and <i>in vivo</i>. The mRNA and protein levels of ALKBH5 and PTBP1 in the LPS-induced cell and septic rat models were detected. CCK-8 and flow cytometry were applied to detect cell viability and pyroptosis. H&E staining was used to observe myocardial tissue damage in rats, and immunohistochemistry to analyze the expression of pyroptosis and inflammation-related proteins in rat tissues.</p><p><strong>Results: </strong>Elevated expressions of both ALKBH5 and PTBP1 were found in the myocardial tissues of LPS-induced septic rats. ALKBH5 knockdown could restore the cell viability and cell pyroptosis inhibited by LPS, while ALKBH5 promoted PTBP1 mRNA stability by affecting its N6-methyladenosine (m6A) modification. <i>In vivo</i> experiments showed that PTBP1 knockdown could largely reverse the antiproliferative and pro-pyroptosis effects of ALKBH5 in LPS-exposed H9C2 cells. ALKBH5 knockdown in in vivo experiments was found to suppress the expressions of pyroptosis biomarkers and attenuate myocardial injury in septic rats.</p><p><strong>Conclusions: </strong>ALKBH5 promoted mRNA stability and the expression of PTBP1 through m6A modification to induce pyroptosis in cardiomyocytes and ultimately aggravate sepsis-induced myocardial dysfunction.</p>","PeriodicalId":6957,"journal":{"name":"Acta Cardiologica Sinica","volume":"40 3","pages":"312-321"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106622/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cardiologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.6515/ACS.202405_40(3).20240127A","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aims to investigate the mechanism by which alkB homolog 5 (ALKBH5) regulates polypyrimidine tract-binding protein 1 (PTBP1) to mediate cardiomyocyte pyroptosis in sepsis-induced myocardial injury.
Methods: Lipopolysaccharide (LPS)-exposed H9C2 cell and rat models were established to mimic septic myocardial injury both in vitro and in vivo. The mRNA and protein levels of ALKBH5 and PTBP1 in the LPS-induced cell and septic rat models were detected. CCK-8 and flow cytometry were applied to detect cell viability and pyroptosis. H&E staining was used to observe myocardial tissue damage in rats, and immunohistochemistry to analyze the expression of pyroptosis and inflammation-related proteins in rat tissues.
Results: Elevated expressions of both ALKBH5 and PTBP1 were found in the myocardial tissues of LPS-induced septic rats. ALKBH5 knockdown could restore the cell viability and cell pyroptosis inhibited by LPS, while ALKBH5 promoted PTBP1 mRNA stability by affecting its N6-methyladenosine (m6A) modification. In vivo experiments showed that PTBP1 knockdown could largely reverse the antiproliferative and pro-pyroptosis effects of ALKBH5 in LPS-exposed H9C2 cells. ALKBH5 knockdown in in vivo experiments was found to suppress the expressions of pyroptosis biomarkers and attenuate myocardial injury in septic rats.
Conclusions: ALKBH5 promoted mRNA stability and the expression of PTBP1 through m6A modification to induce pyroptosis in cardiomyocytes and ultimately aggravate sepsis-induced myocardial dysfunction.
期刊介绍:
Acta Cardiologica Sinica welcomes all the papers in the fields related to cardiovascular medicine including basic research, vascular biology, clinical pharmacology, clinical trial, critical care medicine, coronary artery disease, interventional cardiology, arrythmia and electrophysiology, atherosclerosis, hypertension, cardiomyopathy and heart failure, valvular and structure cardiac disease, pediatric cardiology, cardiovascular surgery, and so on. We received papers from more than 20 countries and areas of the world. Currently, 40% of the papers were submitted to Acta Cardiologica Sinica from Taiwan, 20% from China, and 20% from the other countries and areas in the world. The acceptance rate for publication was around 50% in general.