Artificial Intelligence and Lung Pathology.

IF 5.1 2区 医学 Q1 PATHOLOGY Advances In Anatomic Pathology Pub Date : 2024-09-01 Epub Date: 2024-05-23 DOI:10.1097/PAP.0000000000000448
Emanuel Caranfil, Kris Lami, Wataru Uegami, Junya Fukuoka
{"title":"Artificial Intelligence and Lung Pathology.","authors":"Emanuel Caranfil, Kris Lami, Wataru Uegami, Junya Fukuoka","doi":"10.1097/PAP.0000000000000448","DOIUrl":null,"url":null,"abstract":"<p><p>This manuscript provides a comprehensive overview of the application of artificial intelligence (AI) in lung pathology, particularly in the diagnosis of lung cancer. It discusses various AI models designed to support pathologists and clinicians. AI models supporting pathologists are to standardize diagnosis, score PD-L1 status, supporting tumor cellularity count, and indicating explainability for pathologic judgements. Several models predict outcomes beyond pathologic diagnosis and predict clinical outcomes like patients' survival and molecular alterations. The manuscript emphasizes the potential of AI to enhance accuracy and efficiency in pathology, while also addressing the challenges and future directions for integrating AI into clinical practice.</p>","PeriodicalId":7305,"journal":{"name":"Advances In Anatomic Pathology","volume":" ","pages":"344-351"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances In Anatomic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PAP.0000000000000448","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript provides a comprehensive overview of the application of artificial intelligence (AI) in lung pathology, particularly in the diagnosis of lung cancer. It discusses various AI models designed to support pathologists and clinicians. AI models supporting pathologists are to standardize diagnosis, score PD-L1 status, supporting tumor cellularity count, and indicating explainability for pathologic judgements. Several models predict outcomes beyond pathologic diagnosis and predict clinical outcomes like patients' survival and molecular alterations. The manuscript emphasizes the potential of AI to enhance accuracy and efficiency in pathology, while also addressing the challenges and future directions for integrating AI into clinical practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能与肺部病理学
本手稿全面概述了人工智能(AI)在肺病理学中的应用,尤其是在肺癌诊断中的应用。它讨论了各种旨在支持病理学家和临床医生的人工智能模型。为病理学家提供支持的人工智能模型包括标准化诊断、PD-L1 状态评分、支持肿瘤细胞计数以及显示病理判断的可解释性。一些模型预测病理诊断以外的结果,并预测临床结果,如患者的生存和分子改变。手稿强调了人工智能在提高病理诊断准确性和效率方面的潜力,同时也探讨了将人工智能融入临床实践的挑战和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
3.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: Advances in Anatomic Pathology provides targeted coverage of the key developments in anatomic and surgical pathology. It covers subjects ranging from basic morphology to the most advanced molecular biology techniques. The journal selects and efficiently communicates the most important information from recent world literature and offers invaluable assistance in managing the increasing flow of information in pathology.
期刊最新文献
STK11 Adnexal Tumor: Exploring the Association With Peutz-Jeghers Syndrome and its Distinction From Morphologic Mimickers. The Role of Predictive and Prognostic Biomarkers in Lower Female Genital Tract Pathology: PD-L1, MMR, HER2, p16, p53, and Beyond. Typing of Vulvar Squamous Cell Carcinoma: Why it is Important? Controversial and Evolving Issues in Gynecologic Pathology. Ovarian Sex Cord-Stromal Neoplasms: An Overview of Molecular Events and How to Correlate Morphology With Molecular Findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1