Zachary D Baker, Damien M Rasmussen, Nicholas M Levinson
{"title":"Exploring the conformational landscapes of protein kinases: perspectives from FRET and DEER.","authors":"Zachary D Baker, Damien M Rasmussen, Nicholas M Levinson","doi":"10.1042/BST20230558","DOIUrl":null,"url":null,"abstract":"<p><p>Conformational changes of catalytically-important structural elements are a key feature of the regulation mechanisms of protein kinases and are important for dictating inhibitor binding modes and affinities. The lack of widely applicable methods for tracking kinase conformational changes in solution has hindered our understanding of kinase regulation and our ability to design conformationally selective inhibitors. Here we provide an overview of two recently developed methods that detect conformational changes of the regulatory activation loop and αC-helix of kinases and that yield complementary information about allosteric mechanisms. An intramolecular Förster resonance energy transfer-based approach provides a scalable platform for detecting and classifying structural changes in high-throughput, as well as quantifying ligand binding cooperativity, shedding light on the energetics governing allostery. The pulsed electron paramagnetic resonance technique double electron-electron resonance provides lower throughput but higher resolution information on structural changes that allows for unambiguous assignment of conformational states and quantification of population shifts. Together, these methods are shedding new light on kinase regulation and drug interactions and providing new routes for the identification of novel kinase inhibitors and allosteric modulators.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"1071-1083"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346445/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20230558","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Conformational changes of catalytically-important structural elements are a key feature of the regulation mechanisms of protein kinases and are important for dictating inhibitor binding modes and affinities. The lack of widely applicable methods for tracking kinase conformational changes in solution has hindered our understanding of kinase regulation and our ability to design conformationally selective inhibitors. Here we provide an overview of two recently developed methods that detect conformational changes of the regulatory activation loop and αC-helix of kinases and that yield complementary information about allosteric mechanisms. An intramolecular Förster resonance energy transfer-based approach provides a scalable platform for detecting and classifying structural changes in high-throughput, as well as quantifying ligand binding cooperativity, shedding light on the energetics governing allostery. The pulsed electron paramagnetic resonance technique double electron-electron resonance provides lower throughput but higher resolution information on structural changes that allows for unambiguous assignment of conformational states and quantification of population shifts. Together, these methods are shedding new light on kinase regulation and drug interactions and providing new routes for the identification of novel kinase inhibitors and allosteric modulators.
期刊介绍:
Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences.
Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.