{"title":"The mechanism of action of Botrychium (Thunb.) Sw. for prevention of idiopathic pulmonary fibrosis based on 1H-NMR-based metabolomics.","authors":"Yutao Lou, Xiaozhou Zou, Zongfu Pan, Zhongjie Huang, Shuilian Zheng, Xiaowei Zheng, Xiuli Yang, Meihua Bao, Yuan Zhang, Jinping Gu, Yiwen Zhang","doi":"10.1093/jpp/rgae058","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to reveal the anti-fibrotic effects of Botrychium ternatum (Thunb.) Sw. (BT) against idiopathic pulmonary fibrosis (IPF) and to preliminarily analyze its potential mechanism on bleomycin-induced IPF rats.</p><p><strong>Methods: </strong>The inhibition of fibrosis progression in vivo was assessed by histopathology combined with biochemical indicators. In addition, the metabolic regulatory mechanism was investigated using 1H-nuclear magnetic resonance-based metabolomics combined with multivariate statistical analysis.</p><p><strong>Key findings: </strong>Firstly, biochemical analysis revealed that BT notably suppressed the expression of hydroxyproline and transforming growth factor-β1 in the pulmonary tissue. Secondly, Masson's trichrome staining and hematoxylin and eosin showed that BT substantially improved the structure of the damaged lung and significantly inhibited the proliferation of collagen fibers and the deposition of extracellular matrix. Finally, serum metabolomic analysis suggested that BT may exert anti-fibrotic effects by synergistically regulating tyrosine metabolism; phenylalanine, tyrosine and tryptophan biosynthesis; and synthesis and degradation of ketone bodies.</p><p><strong>Conclusions: </strong>Our study not only clarifies the potential anti-fibrotic mechanism of BT against IPF at the metabolic level but also provides a theoretical basis for developing BT as an effective anti-fibrotic agent.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":"1018-1027"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacy and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jpp/rgae058","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: This study aimed to reveal the anti-fibrotic effects of Botrychium ternatum (Thunb.) Sw. (BT) against idiopathic pulmonary fibrosis (IPF) and to preliminarily analyze its potential mechanism on bleomycin-induced IPF rats.
Methods: The inhibition of fibrosis progression in vivo was assessed by histopathology combined with biochemical indicators. In addition, the metabolic regulatory mechanism was investigated using 1H-nuclear magnetic resonance-based metabolomics combined with multivariate statistical analysis.
Key findings: Firstly, biochemical analysis revealed that BT notably suppressed the expression of hydroxyproline and transforming growth factor-β1 in the pulmonary tissue. Secondly, Masson's trichrome staining and hematoxylin and eosin showed that BT substantially improved the structure of the damaged lung and significantly inhibited the proliferation of collagen fibers and the deposition of extracellular matrix. Finally, serum metabolomic analysis suggested that BT may exert anti-fibrotic effects by synergistically regulating tyrosine metabolism; phenylalanine, tyrosine and tryptophan biosynthesis; and synthesis and degradation of ketone bodies.
Conclusions: Our study not only clarifies the potential anti-fibrotic mechanism of BT against IPF at the metabolic level but also provides a theoretical basis for developing BT as an effective anti-fibrotic agent.
期刊介绍:
JPP keeps pace with new research on how drug action may be optimized by new technologies, and attention is given to understanding and improving drug interactions in the body. At the same time, the journal maintains its established and well-respected core strengths in areas such as pharmaceutics and drug delivery, experimental and clinical pharmacology, biopharmaceutics and drug disposition, and drugs from natural sources. JPP publishes at least one special issue on a topical theme each year.