Hayato Ise, Kyohei Oyama, Ryohei Ushioda, Aina Hirofuji, Keisuke Kamada, Yuri Yoshida, Payam Akhyari, Hiroyuki Kamiya
{"title":"Hypothermic circulatory arrest at 20 ℃ does not deteriorate coagulopathy compared to 28 ℃ in a pig model.","authors":"Hayato Ise, Kyohei Oyama, Ryohei Ushioda, Aina Hirofuji, Keisuke Kamada, Yuri Yoshida, Payam Akhyari, Hiroyuki Kamiya","doi":"10.1007/s10047-024-01449-9","DOIUrl":null,"url":null,"abstract":"<p><p>It is believed that a lower temperature setting of hypothermic circulatory arrest (HCA) in thoracic aortic surgery causes coagulopathy, resulting in excessive bleeding. However, experimental studies that eliminate clinical factors are lacking. The objective of this study is to investigate the influence of the temperature setting of HCA on coagulation in a pig model. Ten pigs were divided into the following two groups: moderate temperature at 28 °C (group M, n = 5) or lower temperature at 20 °C (group L, n = 5). Two hours of HCA during a total of 4 h of cardiopulmonary bypass (CPB) were performed. Blood samples were obtained at the beginning (T1) and the end (T2) of the surgery, and coagulation capability was analyzed through standard laboratory tests (SLTs) and rotational thromboelastometry (ROTEM). In SLTs, hemoglobin, fibrinogen, platelet count, prothrombin time, and activated partial thromboplastin time were analyzed. In ROTEM analyses, clotting time and clot formation time of EXTEM, maximum clot firmness (MCF), and maximum clot elasticity (MCE) of EXTEM and FIBTEM were analyzed. Fibrinogen decreased significantly in both groups (group M, p = 0.008; group L, p = 0.0175) at T2, and FIBTEM MCF and MCE also decreased at T2. There were no differences regarding changes in parameters of SLTs and ROTEM between groups. CPB decreases coagulation capacity, contributed by fibrinogen. However, a lower temperature setting of HCA at 20 °C for 2 h did not significantly affect coagulopathy compared to that of HCA at 28 °C after re-warming to 37 °C.</p>","PeriodicalId":15177,"journal":{"name":"Journal of Artificial Organs","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Organs","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10047-024-01449-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is believed that a lower temperature setting of hypothermic circulatory arrest (HCA) in thoracic aortic surgery causes coagulopathy, resulting in excessive bleeding. However, experimental studies that eliminate clinical factors are lacking. The objective of this study is to investigate the influence of the temperature setting of HCA on coagulation in a pig model. Ten pigs were divided into the following two groups: moderate temperature at 28 °C (group M, n = 5) or lower temperature at 20 °C (group L, n = 5). Two hours of HCA during a total of 4 h of cardiopulmonary bypass (CPB) were performed. Blood samples were obtained at the beginning (T1) and the end (T2) of the surgery, and coagulation capability was analyzed through standard laboratory tests (SLTs) and rotational thromboelastometry (ROTEM). In SLTs, hemoglobin, fibrinogen, platelet count, prothrombin time, and activated partial thromboplastin time were analyzed. In ROTEM analyses, clotting time and clot formation time of EXTEM, maximum clot firmness (MCF), and maximum clot elasticity (MCE) of EXTEM and FIBTEM were analyzed. Fibrinogen decreased significantly in both groups (group M, p = 0.008; group L, p = 0.0175) at T2, and FIBTEM MCF and MCE also decreased at T2. There were no differences regarding changes in parameters of SLTs and ROTEM between groups. CPB decreases coagulation capacity, contributed by fibrinogen. However, a lower temperature setting of HCA at 20 °C for 2 h did not significantly affect coagulopathy compared to that of HCA at 28 °C after re-warming to 37 °C.
期刊介绍:
The aim of the Journal of Artificial Organs is to introduce to colleagues worldwide a broad spectrum of important new achievements in the field of artificial organs, ranging from fundamental research to clinical applications. The scope of the Journal of Artificial Organs encompasses but is not restricted to blood purification, cardiovascular intervention, biomaterials, and artificial metabolic organs. Additionally, the journal will cover technical and industrial innovations. Membership in the Japanese Society for Artificial Organs is not a prerequisite for submission.