{"title":"GAMA: A multi-graph-based anomaly detection framework for business processes via graph neural networks","authors":"Wei Guan, Jian Cao, Yang Gu, Shiyou Qian","doi":"10.1016/j.is.2024.102405","DOIUrl":null,"url":null,"abstract":"<div><p>Anomalies in business processes are inevitable for various reasons such as system failures and operator errors. Detecting anomalies is important for the management and optimization of business processes. However, prevailing anomaly detection approaches often fail to capture crucial structural information about the underlying process. To address this, we propose a multi-Graph based Anomaly detection fraMework for business processes via grAph neural networks, named GAMA. GAMA makes use of structural process information and attribute information in a more integrated way. In GAMA, multiple graphs are applied to model a trace in which each attribute is modeled as a separate graph. In particular, the graph constructed for the special attribute <em>activity</em> reflects the control flow. Then GAMA employs a multi-graph encoder and a multi-sequence decoder on multiple graphs to detect anomalies in terms of the reconstruction errors. Moreover, three teacher forcing styles are designed to enhance GAMA’s ability to reconstruct normal behaviors and thus improve detection performance. We conduct extensive experiments on both synthetic logs and real-life logs. The experiment results demonstrate that GAMA outperforms state-of-the-art methods for both trace-level and attribute-level anomaly detection.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"124 ","pages":"Article 102405"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924000632","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Anomalies in business processes are inevitable for various reasons such as system failures and operator errors. Detecting anomalies is important for the management and optimization of business processes. However, prevailing anomaly detection approaches often fail to capture crucial structural information about the underlying process. To address this, we propose a multi-Graph based Anomaly detection fraMework for business processes via grAph neural networks, named GAMA. GAMA makes use of structural process information and attribute information in a more integrated way. In GAMA, multiple graphs are applied to model a trace in which each attribute is modeled as a separate graph. In particular, the graph constructed for the special attribute activity reflects the control flow. Then GAMA employs a multi-graph encoder and a multi-sequence decoder on multiple graphs to detect anomalies in terms of the reconstruction errors. Moreover, three teacher forcing styles are designed to enhance GAMA’s ability to reconstruct normal behaviors and thus improve detection performance. We conduct extensive experiments on both synthetic logs and real-life logs. The experiment results demonstrate that GAMA outperforms state-of-the-art methods for both trace-level and attribute-level anomaly detection.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.