Schwarzschild black hole surrounded by a cavity and phase transition in the non-commutative gauge theory of gravity

IF 2.9 3区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astroparticle Physics Pub Date : 2024-05-16 DOI:10.1016/j.astropartphys.2024.102988
Abdellah Touati, Slimane Zaim
{"title":"Schwarzschild black hole surrounded by a cavity and phase transition in the non-commutative gauge theory of gravity","authors":"Abdellah Touati,&nbsp;Slimane Zaim","doi":"10.1016/j.astropartphys.2024.102988","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we investigate the phase transition of the Schwarzschild black hole (SBH) inside an isothermal spherical cavity in the context of the non-commutative (NC) gauge theory of gravity, by using the Seiberg–Witten (SW) map and the star product. Firstly, we compute the NC correction to the Hawking temperature and derive the logarithmic correction to the entropy, then we derive the local temperature and local energy of NC SBH in isothermal cavity. Our results show that the non-commutativity removes the commutative divergence behavior of temperature, and prevents the SBH from the complete evaporation, which leads to a remnant black hole, and this geometry has predicted a minimal length in the order of Planck scale <span><math><mrow><mi>Θ</mi><mo>∼</mo><msub><mrow><mi>l</mi></mrow><mrow><mi>p</mi><mi>l</mi><mi>a</mi><mi>n</mi><mi>c</mi><mi>k</mi></mrow></msub></mrow></math></span>. Therefore, the thermodynamic stability and phase transition is studied by analyzing the behavior of the local heat capacity and the Helmholtz free energy in the NC spacetime, where the results show that, the NC SBH has a two second-order phase transition and one first-order phase transition, with two Hawking–Page phase transition in the NC gauge theory.</p></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"161 ","pages":"Article 102988"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927650524000653","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigate the phase transition of the Schwarzschild black hole (SBH) inside an isothermal spherical cavity in the context of the non-commutative (NC) gauge theory of gravity, by using the Seiberg–Witten (SW) map and the star product. Firstly, we compute the NC correction to the Hawking temperature and derive the logarithmic correction to the entropy, then we derive the local temperature and local energy of NC SBH in isothermal cavity. Our results show that the non-commutativity removes the commutative divergence behavior of temperature, and prevents the SBH from the complete evaporation, which leads to a remnant black hole, and this geometry has predicted a minimal length in the order of Planck scale Θlplanck. Therefore, the thermodynamic stability and phase transition is studied by analyzing the behavior of the local heat capacity and the Helmholtz free energy in the NC spacetime, where the results show that, the NC SBH has a two second-order phase transition and one first-order phase transition, with two Hawking–Page phase transition in the NC gauge theory.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
被空腔包围的施瓦兹柴尔德黑洞与非交换引力规理论中的相变
在这项研究中,我们在非交换(NC)引力规理论的背景下,利用塞伯格-维滕(Seiberg-Witten,SW)图和星积研究了等温球腔内施瓦兹柴尔德黑洞(Schwarzschild black hole,SBH)的相变。首先,我们计算了霍金温度的NC修正,并推导了熵的对数修正,然后推导了NC SBH在等温腔中的局部温度和局部能量。我们的结果表明,非交换性消除了温度的交换发散行为,阻止了SBH的完全蒸发,从而导致了残余黑洞,而且这种几何预言了普朗克尺度Θ∼lplanck数量级的最小长度。因此,通过分析数控时空中的局域热容和亥姆霍兹自由能的行为,研究了数控 SBH 的热力学稳定性和相变,结果表明,数控 SBH 有两个二阶相变和一个一阶相变,在数控规理论中有两个霍金-帕格相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astroparticle Physics
Astroparticle Physics 地学天文-天文与天体物理
CiteScore
8.00
自引率
2.90%
发文量
41
审稿时长
79 days
期刊介绍: Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.
期刊最新文献
Revisiting electron-capture decay for Galactic cosmic-ray data A refined model of secondary photon emission from heavy WIMP annihilations in the Galactic Centre Through the heliospheric lens: Directional deflection of high-energy cosmic-ray electrons and positrons Editorial Board The mass of cosmic rays of ultra-high energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1