Measuring tail risk

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-04-01 DOI:10.1016/j.jeconom.2024.105769
Maik Dierkes , Fabian Hollstein , Marcel Prokopczuk , Christoph Matthias Würsig
{"title":"Measuring tail risk","authors":"Maik Dierkes ,&nbsp;Fabian Hollstein ,&nbsp;Marcel Prokopczuk ,&nbsp;Christoph Matthias Würsig","doi":"10.1016/j.jeconom.2024.105769","DOIUrl":null,"url":null,"abstract":"<div><p>We comprehensively investigate the usefulness of tail risk measures proposed in the literature. We evaluate their statistical as well as their economic validity. The option-implied measure of Bollerslev and Todorov (2011b) (<span><math><mrow><mi>B</mi><mi>T</mi><mn>11</mn><mi>Q</mi></mrow></math></span>) performs best overall. While some other tail risk measures excel at specialized tasks, <span><math><mrow><mi>B</mi><mi>T</mi><mn>11</mn><mi>Q</mi></mrow></math></span> performs well in all tests: First, <span><math><mrow><mi>B</mi><mi>T</mi><mn>11</mn><mi>Q</mi></mrow></math></span> can predict both future tail events and future tail volatility. Second, it has predictive power for returns in both the time series and the cross-section, as well as for real economic activity. Finally, a simulation analysis shows that the main driver of performance is measurement error.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"241 2","pages":"Article 105769"},"PeriodicalIF":9.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304407624001155/pdfft?md5=e585dfb93408d24930d48e978ccaf9c5&pid=1-s2.0-S0304407624001155-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001155","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We comprehensively investigate the usefulness of tail risk measures proposed in the literature. We evaluate their statistical as well as their economic validity. The option-implied measure of Bollerslev and Todorov (2011b) (BT11Q) performs best overall. While some other tail risk measures excel at specialized tasks, BT11Q performs well in all tests: First, BT11Q can predict both future tail events and future tail volatility. Second, it has predictive power for returns in both the time series and the cross-section, as well as for real economic activity. Finally, a simulation analysis shows that the main driver of performance is measurement error.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
衡量尾端风险
我们全面研究了文献中提出的尾部风险测量方法的实用性。我们评估了它们在统计和经济上的有效性。Bollerslev 和 Todorov(2011b)的期权隐含度量(BT11Q)总体表现最佳。其他一些尾部风险度量方法擅长于专门的任务,而 BT11Q 在所有测试中都表现出色:首先,BT11Q 可以预测未来的尾部事件和未来的尾部波动。其次,它对时间序列和横截面的回报率以及实际经济活动都有预测能力。最后,模拟分析表明,性能的主要驱动因素是测量误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Inference in cluster randomized trials with matched pairs Why are replication rates so low? On the spectral density of fractional Ornstein–Uhlenbeck processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1