Banghua Zhu;Ziao Wang;Nadim Ghaddar;Jiantao Jiao;Lele Wang
{"title":"Noisy Computing of the OR and MAX Functions","authors":"Banghua Zhu;Ziao Wang;Nadim Ghaddar;Jiantao Jiao;Lele Wang","doi":"10.1109/JSAIT.2024.3396787","DOIUrl":null,"url":null,"abstract":"We consider the problem of computing a function of n variables using noisy queries, where each query is incorrect with some fixed and known probability \n<inline-formula> <tex-math>$p \\in (0,1/2)$ </tex-math></inline-formula>\n. Specifically, we consider the computation of the \n<inline-formula> <tex-math>$\\textsf {OR}$ </tex-math></inline-formula>\n function of n bits (where queries correspond to noisy readings of the bits) and the \n<inline-formula> <tex-math>$\\textsf {MAX}$ </tex-math></inline-formula>\n function of n real numbers (where queries correspond to noisy pairwise comparisons). We show that an expected number of queries of \n<inline-formula> <tex-math>$(1 \\pm o(1)) {}\\frac {n\\log {}\\frac {1}{\\delta }}{D_{\\textsf {KL}}(p \\| 1-p)}$ </tex-math></inline-formula>\n is both sufficient and necessary to compute both functions with a vanishing error probability \n<inline-formula> <tex-math>$\\delta = o(1)$ </tex-math></inline-formula>\n, where \n<inline-formula> <tex-math>$D_{\\textsf {KL}}(p \\| 1-p)$ </tex-math></inline-formula>\n denotes the Kullback-Leibler divergence between \n<inline-formula> <tex-math>$\\textsf {Bern}(p)$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$\\textsf {Bern}(1-p)$ </tex-math></inline-formula>\n distributions. Compared to previous work, our results tighten the dependence on p in both the upper and lower bounds for the two functions.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"302-313"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10520706/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the problem of computing a function of n variables using noisy queries, where each query is incorrect with some fixed and known probability
$p \in (0,1/2)$
. Specifically, we consider the computation of the
$\textsf {OR}$
function of n bits (where queries correspond to noisy readings of the bits) and the
$\textsf {MAX}$
function of n real numbers (where queries correspond to noisy pairwise comparisons). We show that an expected number of queries of
$(1 \pm o(1)) {}\frac {n\log {}\frac {1}{\delta }}{D_{\textsf {KL}}(p \| 1-p)}$
is both sufficient and necessary to compute both functions with a vanishing error probability
$\delta = o(1)$
, where
$D_{\textsf {KL}}(p \| 1-p)$
denotes the Kullback-Leibler divergence between
$\textsf {Bern}(p)$
and
$\textsf {Bern}(1-p)$
distributions. Compared to previous work, our results tighten the dependence on p in both the upper and lower bounds for the two functions.