Iridium Selenium Oxyhydroxide Shell for Polymer Electrolyte Membrane Water Electrolyzer with Low Ir Loading

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-05-22 DOI:10.1021/acsenergylett.4c00884
Myeong-Geun Kim*, Hyun Ju Lee, Tae Kyung Lee, Eungjun Lee, Haneul Jin, Jae-Hyun Park, Se Youn Cho, Sungho Lee, Hyung Chul Ham* and Sung Jong Yoo*, 
{"title":"Iridium Selenium Oxyhydroxide Shell for Polymer Electrolyte Membrane Water Electrolyzer with Low Ir Loading","authors":"Myeong-Geun Kim*,&nbsp;Hyun Ju Lee,&nbsp;Tae Kyung Lee,&nbsp;Eungjun Lee,&nbsp;Haneul Jin,&nbsp;Jae-Hyun Park,&nbsp;Se Youn Cho,&nbsp;Sungho Lee,&nbsp;Hyung Chul Ham* and Sung Jong Yoo*,&nbsp;","doi":"10.1021/acsenergylett.4c00884","DOIUrl":null,"url":null,"abstract":"<p >Low-Ir electrocatalysts are crucial for developing large-scale polymer-electrolyte-membrane water electrolysis (PEMWE) facilities, which are necessary to advance the hydrogen economy. However, the performance and durability of low-Ir electrocatalysts are unsatisfactory. To address this issue, we prepared selenium-modified Ir nanoparticles on high-crystalline-carbon (HCC) supports. The introduction of HCC supports effectively reduced Ir usage, and Se incorporation mitigated Ir degradation. Se nucleophiles suppressed the electrochemical oxidation of Ir, leading to the formation of a unique nanostructure featuring an ultrathin IrO<sub><i>x</i></sub>H<sub><i>y</i></sub>Se<sub><i>z</i></sub> shell and a crystalline Ir core. Theoretical calculations indicated that the electronic structure of Ir and its binding affinity with *O were modified, thereby enhancing the catalytic activities. Ir-IrO<sub><i>x</i></sub>H<sub><i>y</i></sub>Se<sub><i>z</i></sub>/HCC exhibited outstanding PEMWE performances (Ir-mass specific power of 23.69 kW·gIr<sup>–1</sup>; durability for 370 h) with a small amount of Ir (0.05 mg·cm<sup>–2</sup>). Thus, employing a carbon support and nucleophile-induced nanostructures can serve as a strategy to ensure long-term PEMWE performance while reducing Ir usage.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c00884","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Low-Ir electrocatalysts are crucial for developing large-scale polymer-electrolyte-membrane water electrolysis (PEMWE) facilities, which are necessary to advance the hydrogen economy. However, the performance and durability of low-Ir electrocatalysts are unsatisfactory. To address this issue, we prepared selenium-modified Ir nanoparticles on high-crystalline-carbon (HCC) supports. The introduction of HCC supports effectively reduced Ir usage, and Se incorporation mitigated Ir degradation. Se nucleophiles suppressed the electrochemical oxidation of Ir, leading to the formation of a unique nanostructure featuring an ultrathin IrOxHySez shell and a crystalline Ir core. Theoretical calculations indicated that the electronic structure of Ir and its binding affinity with *O were modified, thereby enhancing the catalytic activities. Ir-IrOxHySez/HCC exhibited outstanding PEMWE performances (Ir-mass specific power of 23.69 kW·gIr–1; durability for 370 h) with a small amount of Ir (0.05 mg·cm–2). Thus, employing a carbon support and nucleophile-induced nanostructures can serve as a strategy to ensure long-term PEMWE performance while reducing Ir usage.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于低铱负载聚合物电解质膜水电解槽的铱硒氧氢氧化物外壳
低铱电催化剂对于开发大规模聚合物-电解质-膜水电解(PEMWE)设备至关重要,而这正是推动氢经济发展的必要条件。然而,低铱电催化剂的性能和耐用性并不令人满意。为解决这一问题,我们在高结晶碳(HCC)载体上制备了硒修饰的 Ir 纳米粒子。HCC 载体的引入有效减少了铱的用量,而 Se 的加入则减轻了铱的降解。Se 亲核物抑制了 Ir 的电化学氧化,从而形成了一种独特的纳米结构,具有超薄的 IrOxHySez 外壳和结晶的 Ir 内核。理论计算表明,Ir 的电子结构及其与 *O 的结合亲和力发生了改变,从而提高了催化活性。Ir-IrOxHySez/HCC 只需少量的 Ir(0.05 毫克-cm-2),就能表现出出色的 PEMWE 性能(Ir-质量比功率为 23.69 kW-gIr-1;耐久性为 370 小时)。因此,采用碳支撑和亲核剂诱导的纳米结构可作为一种策略,在减少铱用量的同时确保 PEMWE 的长期性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
In Situ/Operando Imaging Techniques for Next-Generation Battery Analysis 4 V Na Solid State Batteries Enabled by a Scalable Sodium Metal Oxyhalide Solid Electrolyte Electrifying Off-Road Vehicles: Is 1000 [Wh/kg] Enough? Designing the Solid Oxide Electrochemical Cell for Superior Thermal Shock Resistance Enhanced Stability of Spin-Dependent Chiral 2D Perovskite Embedded PV-Biased Anode via Cross-Linking Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1