Molecular Catalysis Enables Fast Polyiodide Conversion for Exceptionally Long-Life Zinc–Iodine Batteries

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-05-20 DOI:10.1021/acsenergylett.4c00992
Zihui Chen, Feifei Wang, Runlin Ma, Wanying Jiao, Deyuan Li, Ao Du, Zhijie Yan, Tianyu Yin, Xunjie Yin, Qiang Li, Xu Zhang*, Nianjun Yang, Zhen Zhou, Quan-Hong Yang* and Chunpeng Yang*, 
{"title":"Molecular Catalysis Enables Fast Polyiodide Conversion for Exceptionally Long-Life Zinc–Iodine Batteries","authors":"Zihui Chen,&nbsp;Feifei Wang,&nbsp;Runlin Ma,&nbsp;Wanying Jiao,&nbsp;Deyuan Li,&nbsp;Ao Du,&nbsp;Zhijie Yan,&nbsp;Tianyu Yin,&nbsp;Xunjie Yin,&nbsp;Qiang Li,&nbsp;Xu Zhang*,&nbsp;Nianjun Yang,&nbsp;Zhen Zhou,&nbsp;Quan-Hong Yang* and Chunpeng Yang*,&nbsp;","doi":"10.1021/acsenergylett.4c00992","DOIUrl":null,"url":null,"abstract":"<p >Zinc–iodine (Zn–I<sub>2</sub>) batteries hold great promise for high-performance, low-cost electrochemical energy storage, but their practical application faces thorny challenges associated with polyiodide shuttling and insufficient cycling stability. Herein, we propose molecular catalysis for long-life Zn–I<sub>2</sub> batteries, employing Hemin as an efficient and stable molecular catalyst. The Hemin molecules containing pentacoordinated iron sites significantly adsorb polyiodides, improve the conversion kinetics of iodine species, reduce triiodide concentration, and suppress polyiodide shuttling. Benefiting from molecular catalysis, the Zn–I<sub>2</sub> batteries demonstrate an exceptional cycling life, exceeding 62000 cycles with only 0.00052% decay per cycle while maintaining discharge voltage plateaus. The pivotal function of molecular catalysis in both the adsorption and conversion of polyiodide species shows its significant impact on improving the cycling lifespan of Zn–I<sub>2</sub> batteries toward long-life energy storage.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c00992","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc–iodine (Zn–I2) batteries hold great promise for high-performance, low-cost electrochemical energy storage, but their practical application faces thorny challenges associated with polyiodide shuttling and insufficient cycling stability. Herein, we propose molecular catalysis for long-life Zn–I2 batteries, employing Hemin as an efficient and stable molecular catalyst. The Hemin molecules containing pentacoordinated iron sites significantly adsorb polyiodides, improve the conversion kinetics of iodine species, reduce triiodide concentration, and suppress polyiodide shuttling. Benefiting from molecular catalysis, the Zn–I2 batteries demonstrate an exceptional cycling life, exceeding 62000 cycles with only 0.00052% decay per cycle while maintaining discharge voltage plateaus. The pivotal function of molecular catalysis in both the adsorption and conversion of polyiodide species shows its significant impact on improving the cycling lifespan of Zn–I2 batteries toward long-life energy storage.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子催化实现了超长寿命锌碘电池的快速聚碘转化
锌碘(Zn-I2)电池在高性能、低成本的电化学储能方面前景广阔,但其实际应用却面临着多碘穿梭和循环稳定性不足等棘手问题。在此,我们提出了利用 Hemin 作为高效稳定的分子催化剂来实现长寿命 Zn-I2 电池的分子催化技术。含有五配位铁位点的 Hemin 分子能显著吸附多碘化物,改善碘物种的转化动力学,降低三碘化物浓度,并抑制多碘化物穿梭。得益于分子催化作用,Zn-I2 电池显示出卓越的循环寿命,循环次数超过 62000 次,每次循环的衰减率仅为 0.00052%,同时还能保持高电平放电电压。分子催化在多碘化物的吸附和转化方面的关键作用表明,它对提高 Zn-I2 电池的循环寿命、实现长寿命能量存储具有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
In Situ/Operando Imaging Techniques for Next-Generation Battery Analysis 4 V Na Solid State Batteries Enabled by a Scalable Sodium Metal Oxyhalide Solid Electrolyte Electrifying Off-Road Vehicles: Is 1000 [Wh/kg] Enough? Designing the Solid Oxide Electrochemical Cell for Superior Thermal Shock Resistance Enhanced Stability of Spin-Dependent Chiral 2D Perovskite Embedded PV-Biased Anode via Cross-Linking Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1