Computationally Guided Synthesis of Battery Materials

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-05-22 DOI:10.1021/acsenergylett.4c00821
Nathan J. Szymanski,  and , Christopher J. Bartel*, 
{"title":"Computationally Guided Synthesis of Battery Materials","authors":"Nathan J. Szymanski,&nbsp; and ,&nbsp;Christopher J. Bartel*,&nbsp;","doi":"10.1021/acsenergylett.4c00821","DOIUrl":null,"url":null,"abstract":"<p >Materials synthesis is a critical step in the development of energy storage technologies, from the first synthesis of newly predicted materials to the optimization of key properties for established materials. While the synthesis of solid-state materials has traditionally relied on intuition-driven trial-and-error, computational approaches are now emerging to accelerate the identification of improved synthesis recipes. In this Perspective, we explore these techniques and focus on their ability to guide precursor selection for solid-state synthesis. The applicability of each method is discussed in the context of materials for batteries, including Li-ion cathodes and solid electrolytes for all-solid-state batteries. Our analysis showcases the effectiveness of these computational methods while also highlighting their limitations. Based on these findings, we provide an outlook on future developments that can address existing limitations and make progress toward synthesis-by-design for battery materials.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c00821","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Materials synthesis is a critical step in the development of energy storage technologies, from the first synthesis of newly predicted materials to the optimization of key properties for established materials. While the synthesis of solid-state materials has traditionally relied on intuition-driven trial-and-error, computational approaches are now emerging to accelerate the identification of improved synthesis recipes. In this Perspective, we explore these techniques and focus on their ability to guide precursor selection for solid-state synthesis. The applicability of each method is discussed in the context of materials for batteries, including Li-ion cathodes and solid electrolytes for all-solid-state batteries. Our analysis showcases the effectiveness of these computational methods while also highlighting their limitations. Based on these findings, we provide an outlook on future developments that can address existing limitations and make progress toward synthesis-by-design for battery materials.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算引导下的电池材料合成
材料合成是开发储能技术的关键步骤,从首次合成新预测的材料到优化已有材料的关键性能,都离不开材料合成。固态材料的合成历来依赖于直觉驱动的试错,而计算方法的出现则加速了改进合成配方的确定。在本视角中,我们将探讨这些技术,并重点关注它们在指导固态合成前驱体选择方面的能力。我们结合电池材料(包括锂离子阴极和全固态电池的固体电解质)讨论了每种方法的适用性。我们的分析展示了这些计算方法的有效性,同时也强调了它们的局限性。基于这些发现,我们展望了未来的发展,这些发展可以解决现有的局限性,并在电池材料的设计合成方面取得进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Laser Deposition of Metal Halide Perovskites Binary Organic Solar Cells with >19.6% Efficiency: The Significance of Self-Assembled Monolayer Modification In Situ Observation of Thermally Activated and Localized Li Leaching from Lithiated Graphite Oxygen Dimerization as a Defect-Driven Process in Bulk LiNiO2 Metal Nitride as a Mediator for the Electrochemical Synthesis of NH3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1