Manipulation of fungal cell wall integrity to improve production of fungal natural products.

2区 生物学 Q1 Immunology and Microbiology Advances in applied microbiology Pub Date : 2023-01-01 Epub Date: 2023-09-02 DOI:10.1016/bs.aambs.2023.07.005
Huiling Liu, Zhengshan Luo, Yijian Rao
{"title":"Manipulation of fungal cell wall integrity to improve production of fungal natural products.","authors":"Huiling Liu, Zhengshan Luo, Yijian Rao","doi":"10.1016/bs.aambs.2023.07.005","DOIUrl":null,"url":null,"abstract":"<p><p>Fungi, as an important industrial microorganism, play an essential role in the production of natural products (NPs) due to their advantages of utilizing cheap raw materials as substrates and strong protein secretion ability. Although many metabolic engineering strategies have been adopted to enhance the biosynthetic pathway of NPs in fungi, the fungal cell wall as a natural barrier tissue is the final and key step that affects the efficiency of NPs synthesis. To date, many important progresses have been achieved in improving the synthesis of NPs by regulating the cell wall structure of fungi. In this review, we systematically summarize and discuss various strategies for modifying the cell wall structure of fungi to improve the synthesis of NPs. At first, the cell wall structure of different types of fungi is systematically described. Then, strategies to disrupt cell wall integrity (CWI) by regulating the synthesis of cell wall polysaccharides and binding proteins are summarized, which have been applied to improve the synthesis of NPs. In addition, we also summarize the studies on the regulation of CWI-related signaling pathway and the addition of exogenous components for regulating CWI to improve the synthesis of NPs. Finally, we propose the current challenges and essential strategies to usher in an era of more extensive manipulation of fungal CWI to improve the production of fungal NPs.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.aambs.2023.07.005","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

Abstract

Fungi, as an important industrial microorganism, play an essential role in the production of natural products (NPs) due to their advantages of utilizing cheap raw materials as substrates and strong protein secretion ability. Although many metabolic engineering strategies have been adopted to enhance the biosynthetic pathway of NPs in fungi, the fungal cell wall as a natural barrier tissue is the final and key step that affects the efficiency of NPs synthesis. To date, many important progresses have been achieved in improving the synthesis of NPs by regulating the cell wall structure of fungi. In this review, we systematically summarize and discuss various strategies for modifying the cell wall structure of fungi to improve the synthesis of NPs. At first, the cell wall structure of different types of fungi is systematically described. Then, strategies to disrupt cell wall integrity (CWI) by regulating the synthesis of cell wall polysaccharides and binding proteins are summarized, which have been applied to improve the synthesis of NPs. In addition, we also summarize the studies on the regulation of CWI-related signaling pathway and the addition of exogenous components for regulating CWI to improve the synthesis of NPs. Finally, we propose the current challenges and essential strategies to usher in an era of more extensive manipulation of fungal CWI to improve the production of fungal NPs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
操纵真菌细胞壁的完整性以提高真菌天然产品的产量。
真菌作为一种重要的工业微生物,具有利用廉价原料作为底物、蛋白质分泌能力强等优势,在天然产物(NPs)的生产中发挥着至关重要的作用。尽管人们采用了许多代谢工程策略来增强真菌中 NPs 的生物合成途径,但作为天然屏障组织的真菌细胞壁是影响 NPs 合成效率的最后和关键步骤。迄今为止,在通过调节真菌细胞壁结构提高 NPs 合成效率方面已取得了许多重要进展。在这篇综述中,我们系统地总结和讨论了改变真菌细胞壁结构以改善 NPs 合成的各种策略。首先,系统介绍了不同类型真菌的细胞壁结构。然后,总结了通过调节细胞壁多糖和结合蛋白的合成来破坏细胞壁完整性(CWI)的策略,这些策略已被应用于改善 NPs 的合成。此外,我们还总结了调控 CWI 相关信号通路的研究,以及添加外源成分调控 CWI 以改善 NPs 合成的研究。最后,我们提出了当前的挑战和必要的策略,以迎接更广泛地操纵真菌 CWI 以提高真菌 NPs 产量的时代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in applied microbiology
Advances in applied microbiology 生物-生物工程与应用微生物
CiteScore
8.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Advances in Applied Microbiology offers intensive reviews of the latest techniques and discoveries in this rapidly moving field. The editors are recognized experts and the format is comprehensive and instructive. Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology. Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays.
期刊最新文献
Stress response and adaptation mechanisms in Kluyveromyces marxianus. Selenium bioactive compounds produced by beneficial microbes. Development and applications of genome-scale metabolic network models. The infant gut microbiota as the cornerstone for future gastrointestinal health. Effects of gut bacteria and their metabolites on gut health of animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1