Ali Majdi, Hossein Mostafavi, Ali Moharrami, Shahin Yaraghi, Amirreza Ghaffari Tabrizi, Morteza Dojahani, Erfan Alirezapour, Kamyar Mansori
{"title":"Role of histone deacetylases and sirtuins in the ischaemic stroke: a protocol for a systematic review and meta-analysis of animal studies.","authors":"Ali Majdi, Hossein Mostafavi, Ali Moharrami, Shahin Yaraghi, Amirreza Ghaffari Tabrizi, Morteza Dojahani, Erfan Alirezapour, Kamyar Mansori","doi":"10.1136/svn-2024-003235","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Stroke is a major cause of global mortality and disability. Currently, the treatment of acute ischaemic stroke through reperfusion has posed several challenges, raising the need for complementary options to protect the ischaemic penumbra. Recent investigations have indicated that certain epigenetic factors, specifically, histone deacetylases (HDACs) and sirtuins, can be promising for ischaemic stroke therapy, with recent studies suggesting that inhibitors of HDACs or sirtuins may provide neuronal protection after ischaemic stroke. However, the impact of specific HDAC/sirtuin isoforms on the survival of neuronal cells following stroke is still uncertain. This study aims to provide a comprehensive overview of the function of HDACs and their modulators in the treatment of acute ischaemic stroke.</p><p><strong>Methods: </strong>This systematic review and meta-analysis will encompass animal intervention studies that explore the efficacy of modulation of HDACs and sirtuins in the acute phase of ischaemic stroke. The review will be reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Electronic searches will be conducted in PubMed, Web of Science and Scopus, with subsequent screening by independent reviewers based on the established eligibility criteria. Methodological quality will be evaluated using the SYRCLE risk of bias tool. The primary outcomes will be infarct volume and functional response, with the secondary outcomes established a priori. Data pertaining to infarct volume will be used for random-effects meta-analysis. Additionally, a descriptive summary will be conducted for the functional response and secondary outcomes.</p><p><strong>Discussion: </strong>No systematic review and meta-analysis on the treatment of ischaemic stroke through HDAC modulation has been conducted to date. A comprehensive analysis of the available literature on the relevant preclinical investigations can yield invaluable insights in discerning the most effective trials and in further standardisation of preclinical studies.</p><p><strong>Systematic review registration: </strong>This systematic review has been recorded in the International Prospective Register of Systematic Reviews (PROSPERO), with the assigned reference number: CRD42023381420.</p>","PeriodicalId":48733,"journal":{"name":"Journal of Investigative Medicine","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Investigative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/svn-2024-003235","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Stroke is a major cause of global mortality and disability. Currently, the treatment of acute ischaemic stroke through reperfusion has posed several challenges, raising the need for complementary options to protect the ischaemic penumbra. Recent investigations have indicated that certain epigenetic factors, specifically, histone deacetylases (HDACs) and sirtuins, can be promising for ischaemic stroke therapy, with recent studies suggesting that inhibitors of HDACs or sirtuins may provide neuronal protection after ischaemic stroke. However, the impact of specific HDAC/sirtuin isoforms on the survival of neuronal cells following stroke is still uncertain. This study aims to provide a comprehensive overview of the function of HDACs and their modulators in the treatment of acute ischaemic stroke.
Methods: This systematic review and meta-analysis will encompass animal intervention studies that explore the efficacy of modulation of HDACs and sirtuins in the acute phase of ischaemic stroke. The review will be reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Electronic searches will be conducted in PubMed, Web of Science and Scopus, with subsequent screening by independent reviewers based on the established eligibility criteria. Methodological quality will be evaluated using the SYRCLE risk of bias tool. The primary outcomes will be infarct volume and functional response, with the secondary outcomes established a priori. Data pertaining to infarct volume will be used for random-effects meta-analysis. Additionally, a descriptive summary will be conducted for the functional response and secondary outcomes.
Discussion: No systematic review and meta-analysis on the treatment of ischaemic stroke through HDAC modulation has been conducted to date. A comprehensive analysis of the available literature on the relevant preclinical investigations can yield invaluable insights in discerning the most effective trials and in further standardisation of preclinical studies.
Systematic review registration: This systematic review has been recorded in the International Prospective Register of Systematic Reviews (PROSPERO), with the assigned reference number: CRD42023381420.
期刊介绍:
Journal of Investigative Medicine (JIM) is the official publication of the American Federation for Medical Research. The journal is peer-reviewed and publishes high-quality original articles and reviews in the areas of basic, clinical, and translational medical research.
JIM publishes on all topics and specialty areas that are critical to the conduct of the entire spectrum of biomedical research: from the translation of clinical observations at the bedside, to basic and animal research to clinical research and the implementation of innovative medical care.