In vitro study of the expression of autophagy genes ATG101, mTOR and AMPK in breast cancer with treatment of lactoferrin and in silico study of their communication networks and protein interactions
{"title":"In vitro study of the expression of autophagy genes ATG101, mTOR and AMPK in breast cancer with treatment of lactoferrin and in silico study of their communication networks and protein interactions","authors":"Atefeh Mashhadi Kholerdi , Fatemeh Moradian , Havva Mehralitabar","doi":"10.1016/j.pbiomolbio.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Autophagy is a new window of science that has been noticed due to the importance of specific therapies in cancer. In this study, the effect of lactoferrin (Lf) on the expression level of ATG101, mTOR and AMPK genes in breast cancer cell line MCF7, as well as the interaction between lactoferrin protein and their protein were investigated. The expression level of the genes was measured using a real-time PCR method. PDB, UniProt, KEGG, and STRING databases and ClusPro webserver and PyMol software were used <em>in silico</em> study. The results showed that the expression level of the ATG101 gene in treatment with concentrations of 100, 400, 600, and 800 μg/ml Lf decreased by 0.05, 0.13, 0.54 and 0.77, respectively. The expression level of the mTOR gene in treatment with concentrations of 100, 400, 600, and 800 μg/ml Lf decreased by 0.07, 0.05, 0.13, and 0.49 times respectively. The level of the AMPK gene expression in treatment with concentrations of 100, 400, 600, and 800 μg/ml Lf decreased by 0.05, 0.01, 0.06, and 0.03, respectively. Virtualization of the interaction of Lf protein with ATG101, mTOR and AMPK proteins by Pymol software showed that the N lobe region of Lf interacted with the HORMA domain of ATG101 protein, the fat domain of mTOR protein, and the CTD domain of AMPK protein. Although Lf was not able to increase the expression of autophagy-inducing genes, it may be able to induce autophagy through protein interaction by activating or inhibiting proteins related to autophagy regulation.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"190 ","pages":"Pages 19-27"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biophysics & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079610724000543","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Autophagy is a new window of science that has been noticed due to the importance of specific therapies in cancer. In this study, the effect of lactoferrin (Lf) on the expression level of ATG101, mTOR and AMPK genes in breast cancer cell line MCF7, as well as the interaction between lactoferrin protein and their protein were investigated. The expression level of the genes was measured using a real-time PCR method. PDB, UniProt, KEGG, and STRING databases and ClusPro webserver and PyMol software were used in silico study. The results showed that the expression level of the ATG101 gene in treatment with concentrations of 100, 400, 600, and 800 μg/ml Lf decreased by 0.05, 0.13, 0.54 and 0.77, respectively. The expression level of the mTOR gene in treatment with concentrations of 100, 400, 600, and 800 μg/ml Lf decreased by 0.07, 0.05, 0.13, and 0.49 times respectively. The level of the AMPK gene expression in treatment with concentrations of 100, 400, 600, and 800 μg/ml Lf decreased by 0.05, 0.01, 0.06, and 0.03, respectively. Virtualization of the interaction of Lf protein with ATG101, mTOR and AMPK proteins by Pymol software showed that the N lobe region of Lf interacted with the HORMA domain of ATG101 protein, the fat domain of mTOR protein, and the CTD domain of AMPK protein. Although Lf was not able to increase the expression of autophagy-inducing genes, it may be able to induce autophagy through protein interaction by activating or inhibiting proteins related to autophagy regulation.
期刊介绍:
Progress in Biophysics & Molecular Biology is an international review journal and covers the ground between the physical and biological sciences since its launch in 1950. It indicates to the physicist the great variety of unsolved problems awaiting attention in biology and medicine. The biologist and biochemist will find that this journal presents new and stimulating ideas and novel approaches to studying and influencing structural and functional properties of the living organism. This journal will be of particular interest to biophysicists, biologists, biochemists, cell physiologists, systems biologists, and molecular biologists.