Kaihang Han, J Woody Ju, Xiangsheng Chen, Le-Yang Lv, Shuai Zhou, Gang Wei, Zhiguo Zhang, Hongzhi Cui
{"title":"A 3D micromechanical model to predict the complete stress-strain relation of microencapsulated self-healing concrete","authors":"Kaihang Han, J Woody Ju, Xiangsheng Chen, Le-Yang Lv, Shuai Zhou, Gang Wei, Zhiguo Zhang, Hongzhi Cui","doi":"10.1177/10567895241245956","DOIUrl":null,"url":null,"abstract":"The research on the concrete structure built with self-healing materials brings inspiration to increase the safety and sustainability of underground structures in the whole life cycle. The utilization of microencapsulated healing agents in self-healing concrete has demonstrated efficacy in the repair of microcracks within concrete structures. Nevertheless, there exists a dearth of effective methodologies for assessing the impact of microcapsule parameters on the mechanical properties of self-healing concrete. This study introduces an innovative three-dimensional micromechanical model that can be utilized to analyze the micromechanical response of microencapsulated self-healing concrete under tensile loading conditions. The 3D micromechanical model is accomplished through the utilization of the elastic secant compliance tensor. Subsequently, a comprehensive examination is undertaken to analyze the progression of damage-healing in self-healing concrete incorporating microcapsules. Finally, a parametric investigation is conducted to elucidate the impact of the micro-parameters on the mechanical behavior of self-healing concrete. The present discovery holds significant implications for the development of microencapsulated self-healing concrete for underground structures, particularly in terms of establishing appropriate parameters.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"43 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895241245956","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The research on the concrete structure built with self-healing materials brings inspiration to increase the safety and sustainability of underground structures in the whole life cycle. The utilization of microencapsulated healing agents in self-healing concrete has demonstrated efficacy in the repair of microcracks within concrete structures. Nevertheless, there exists a dearth of effective methodologies for assessing the impact of microcapsule parameters on the mechanical properties of self-healing concrete. This study introduces an innovative three-dimensional micromechanical model that can be utilized to analyze the micromechanical response of microencapsulated self-healing concrete under tensile loading conditions. The 3D micromechanical model is accomplished through the utilization of the elastic secant compliance tensor. Subsequently, a comprehensive examination is undertaken to analyze the progression of damage-healing in self-healing concrete incorporating microcapsules. Finally, a parametric investigation is conducted to elucidate the impact of the micro-parameters on the mechanical behavior of self-healing concrete. The present discovery holds significant implications for the development of microencapsulated self-healing concrete for underground structures, particularly in terms of establishing appropriate parameters.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).