{"title":"Anti-obesity effects of potential probiotic Lactobacillus strains isolated from Mongolian fermented dairy products in high-fat diet-induced obese rodent model.","authors":"Unurjargal Galindev, Uugantsetseg Erdenebold, Galindev Batnasan, Oyundelger Ganzorig, Batjargal Batdorj","doi":"10.1007/s42770-024-01372-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to investigate the anti-obesity properties of lactic acid bacteria (LAB) isolated from fermented dairy products such as \"Airag\" and \"Khoormog\" in Mongolia. These traditional dairy products are widely used in Mongolia and believe in having potential probiotic, anti-diabetes, anti-cancer, and anti-tuberculosis properties and are made from unheated two-humped camel milk and mare milk, respectively. We chose three LAB strains based on their probiotic characteristics, including tolerance of gastric and bile acids. Then we checked the anti-obesity activity of probiotic strains in vivo. An animal model was evaluated in twenty male C57BL/6J mice by inducing obesity with a high-fat diet (HFD), which was divided into five groups: regular diet group (Negative control), HFD group (Positive control), HFD with Lacticaseibacillus paracasei X-1 (X-1), Lacticaseibacillus paracasei X-17 (X-17), and Limosilactobacillus fermentum BM-325 (BM-325). For six weeks, 5 × 10<sup>9</sup> colony-forming units (CFU) of bacteria were given orally to the LAB-fed groups. Fasting blood glucose (FBG), lipid profiles, organ index, and organ morphology were all measured. The probiotic strains suppressed growth in adipose cell volume, stabilized FBG, reduced liver cell degeneration, and slowed HFD-induced body weight gain. The results suggest that some strains increase general metabolism while lowering body weight.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":"2501-2509"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405555/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42770-024-01372-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to investigate the anti-obesity properties of lactic acid bacteria (LAB) isolated from fermented dairy products such as "Airag" and "Khoormog" in Mongolia. These traditional dairy products are widely used in Mongolia and believe in having potential probiotic, anti-diabetes, anti-cancer, and anti-tuberculosis properties and are made from unheated two-humped camel milk and mare milk, respectively. We chose three LAB strains based on their probiotic characteristics, including tolerance of gastric and bile acids. Then we checked the anti-obesity activity of probiotic strains in vivo. An animal model was evaluated in twenty male C57BL/6J mice by inducing obesity with a high-fat diet (HFD), which was divided into five groups: regular diet group (Negative control), HFD group (Positive control), HFD with Lacticaseibacillus paracasei X-1 (X-1), Lacticaseibacillus paracasei X-17 (X-17), and Limosilactobacillus fermentum BM-325 (BM-325). For six weeks, 5 × 109 colony-forming units (CFU) of bacteria were given orally to the LAB-fed groups. Fasting blood glucose (FBG), lipid profiles, organ index, and organ morphology were all measured. The probiotic strains suppressed growth in adipose cell volume, stabilized FBG, reduced liver cell degeneration, and slowed HFD-induced body weight gain. The results suggest that some strains increase general metabolism while lowering body weight.
期刊介绍:
The Brazilian Journal of Microbiology is an international peer reviewed journal that covers a wide-range of research on fundamental and applied aspects of microbiology.
The journal considers for publication original research articles, short communications, reviews, and letters to the editor, that may be submitted to the following sections: Biotechnology and Industrial Microbiology, Food Microbiology, Bacterial and Fungal Pathogenesis, Clinical Microbiology, Environmental Microbiology, Veterinary Microbiology, Fungal and Bacterial Physiology, Bacterial, Fungal and Virus Molecular Biology, Education in Microbiology. For more details on each section, please check out the instructions for authors.
The journal is the official publication of the Brazilian Society of Microbiology and currently publishes 4 issues per year.