Mubashshir Ali, Heena Tabassum, Mohammad Mumtaz Alam, Abdulaziz S Alothaim, Esam S Al-Malki, Azfar Jamal, Suhel Parvez
{"title":"Valsartan: An Angiotensin Receptor Blocker Modulates BDNF Expression and Provides Neuroprotection Against Cerebral Ischemic Reperfusion Injury.","authors":"Mubashshir Ali, Heena Tabassum, Mohammad Mumtaz Alam, Abdulaziz S Alothaim, Esam S Al-Malki, Azfar Jamal, Suhel Parvez","doi":"10.1007/s12035-024-04237-x","DOIUrl":null,"url":null,"abstract":"<p><p>AT1 receptor blockers (ARBs) are commonly used drugs to treat cardiovascular disease and hypertension, but research on their impact on brain disorders is unattainable. Valsartan (VAL) is a drug that specifically blocks AT1 receptor. Despite the previous evidence for VAL to provide neuroprotection in case of ischemic reperfusion injury, evaluation of their potential in mitigating mitochondrial dysfunction that causes neuronal cell death and neurobehavioral impairment remains unknown. The aim of this study was to evaluate the therapeutic effect of repurposed drug VAL against ischemic reperfusion injury-induced neuronal alternation. tMCAO surgery was performed to induce focal cerebral ischemic reperfusion injury. Following ischemic reperfusion injury, we analyzed the therapeutic efficacy of VAL by measuring the infarct volume, brain water content, mitochondrial oxidative stress, mitochondrial membrane potential, histopathological architecture, and apoptotic marker protein. Our results showed that VAL administrations (5 and 10 mg/kg b.wt.) mitigated the brain damage, enhanced neurobehavioral outcomes, and alleviated mitochondrial-mediated oxidative damage. In addition to this, our findings demonstrated that VAL administration inhibits neuronal apoptosis by restoring the mitochondrial membrane potential. A follow-up investigation demonstrated that VAL induces BDNF expression and promoted ischemic tolerance via modulating the Akt/p-Creb signaling pathway. In summary, our results suggested that VAL administration provided neuroprotection, ameliorated mitochondrial dysfunction, preserved the integrity of neurons, and lead to functional improvement after ischemic reperfusion injury.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"10805-10819"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04237-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
AT1 receptor blockers (ARBs) are commonly used drugs to treat cardiovascular disease and hypertension, but research on their impact on brain disorders is unattainable. Valsartan (VAL) is a drug that specifically blocks AT1 receptor. Despite the previous evidence for VAL to provide neuroprotection in case of ischemic reperfusion injury, evaluation of their potential in mitigating mitochondrial dysfunction that causes neuronal cell death and neurobehavioral impairment remains unknown. The aim of this study was to evaluate the therapeutic effect of repurposed drug VAL against ischemic reperfusion injury-induced neuronal alternation. tMCAO surgery was performed to induce focal cerebral ischemic reperfusion injury. Following ischemic reperfusion injury, we analyzed the therapeutic efficacy of VAL by measuring the infarct volume, brain water content, mitochondrial oxidative stress, mitochondrial membrane potential, histopathological architecture, and apoptotic marker protein. Our results showed that VAL administrations (5 and 10 mg/kg b.wt.) mitigated the brain damage, enhanced neurobehavioral outcomes, and alleviated mitochondrial-mediated oxidative damage. In addition to this, our findings demonstrated that VAL administration inhibits neuronal apoptosis by restoring the mitochondrial membrane potential. A follow-up investigation demonstrated that VAL induces BDNF expression and promoted ischemic tolerance via modulating the Akt/p-Creb signaling pathway. In summary, our results suggested that VAL administration provided neuroprotection, ameliorated mitochondrial dysfunction, preserved the integrity of neurons, and lead to functional improvement after ischemic reperfusion injury.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.