Elizabeth S. Greene, Maryam Afkhami Ardakani, Sami Dridi
{"title":"Effects of an herbal adaptogen feed-additive on feeding-related hypothalamic neuropeptides in chronic cyclic heat-stressed chickens","authors":"Elizabeth S. Greene, Maryam Afkhami Ardakani, Sami Dridi","doi":"10.1016/j.npep.2024.102439","DOIUrl":null,"url":null,"abstract":"<div><p>Heat stress (HS) is a global serious issue in the poultry industry with numerous adverse effects, including increased stress, depressed feed intake (FI), poor growth performance and higher mortality. Herbal adaptogens, plant extracts considered as stress response modifiers, are metabolic regulators that improve an organism's ability to adapt to and minimize damage from environmental stresses. Previously, we showed that herbal adaptogen supplementation increased FI and body weight (BW) of broiler (meat-type) chickens reared under HS conditions. Therefore, we hypothesized that these effects may be mediated through modulation of hypothalamic feeding-related neuropeptides. Male Cobb 500 chicks were reared in 12 environmental chambers with three diets: a corn-soybean-based diet (C) and two herbal adaptogen-supplemented diets at 500 g/1000 kg (NR-PHY-500) and 1 kg/1000 kg (NR-PHY-1000). Broilers in 9 chambers were exposed to chronic cyclic HS (35 °C for 8 h/day) from d29 to d42, while 3 chambers were maintained at 24 °C (thermoneutral, TN) for all 42 days. Hypothalamic samples were collected on d42 from each group, both before the onset of HS (Pre-HS) that day and after 3 h of HS (post-HS). Hypothalamic expressions of neuropeptide Y (NPY) receptors Y4 and Y7, Corticotropin-releasing hormone (CRH), orexin receptor 1 (ORXR1), melanocortin receptors (MC1R, MC4R, and MC5R), visfatin and neurosecretory protein GL (NPGL) genes were significantly upregulated by adaptogen supplementation. The hypothalamic expression of MC2R was affect by period, with a significant upregulation during post-HS phase. There was a significant period by treatment interaction for hypothalamic orexin and adiponectin expression. The hypothalamic expression of NPY, Y1, Y2, Y5, Y6, proopiomelanocortin (POMC), cocaine and amphetamine regulated transcript (CART), agouti-related peptide (AgRP), ORXR2, AdipR1/2, MC3R, and ghrelin was not affected by diet supplementation nor by HS exposure.</p><p>In conclusion, these findings suggest that in-feed supplementation of adaptogen might improve FI and growth via modulation of hypothalamic feeding-related neuropeptides in heat-stressed broilers.</p></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"106 ","pages":"Article 102439"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropeptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143417924000386","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Heat stress (HS) is a global serious issue in the poultry industry with numerous adverse effects, including increased stress, depressed feed intake (FI), poor growth performance and higher mortality. Herbal adaptogens, plant extracts considered as stress response modifiers, are metabolic regulators that improve an organism's ability to adapt to and minimize damage from environmental stresses. Previously, we showed that herbal adaptogen supplementation increased FI and body weight (BW) of broiler (meat-type) chickens reared under HS conditions. Therefore, we hypothesized that these effects may be mediated through modulation of hypothalamic feeding-related neuropeptides. Male Cobb 500 chicks were reared in 12 environmental chambers with three diets: a corn-soybean-based diet (C) and two herbal adaptogen-supplemented diets at 500 g/1000 kg (NR-PHY-500) and 1 kg/1000 kg (NR-PHY-1000). Broilers in 9 chambers were exposed to chronic cyclic HS (35 °C for 8 h/day) from d29 to d42, while 3 chambers were maintained at 24 °C (thermoneutral, TN) for all 42 days. Hypothalamic samples were collected on d42 from each group, both before the onset of HS (Pre-HS) that day and after 3 h of HS (post-HS). Hypothalamic expressions of neuropeptide Y (NPY) receptors Y4 and Y7, Corticotropin-releasing hormone (CRH), orexin receptor 1 (ORXR1), melanocortin receptors (MC1R, MC4R, and MC5R), visfatin and neurosecretory protein GL (NPGL) genes were significantly upregulated by adaptogen supplementation. The hypothalamic expression of MC2R was affect by period, with a significant upregulation during post-HS phase. There was a significant period by treatment interaction for hypothalamic orexin and adiponectin expression. The hypothalamic expression of NPY, Y1, Y2, Y5, Y6, proopiomelanocortin (POMC), cocaine and amphetamine regulated transcript (CART), agouti-related peptide (AgRP), ORXR2, AdipR1/2, MC3R, and ghrelin was not affected by diet supplementation nor by HS exposure.
In conclusion, these findings suggest that in-feed supplementation of adaptogen might improve FI and growth via modulation of hypothalamic feeding-related neuropeptides in heat-stressed broilers.
期刊介绍:
The aim of Neuropeptides is the rapid publication of original research and review articles, dealing with the structure, distribution, actions and functions of peptides in the central and peripheral nervous systems. The explosion of research activity in this field has led to the identification of numerous naturally occurring endogenous peptides which act as neurotransmitters, neuromodulators, or trophic factors, to mediate nervous system functions. Increasing numbers of non-peptide ligands of neuropeptide receptors have been developed, which act as agonists or antagonists in peptidergic systems.
The journal provides a unique opportunity of integrating the many disciplines involved in all neuropeptide research. The journal publishes articles on all aspects of the neuropeptide field, with particular emphasis on gene regulation of peptide expression, peptide receptor subtypes, transgenic and knockout mice with mutations in genes for neuropeptides and peptide receptors, neuroanatomy, physiology, behaviour, neurotrophic factors, preclinical drug evaluation, clinical studies, and clinical trials.