Rapid prediction of grain boundary network evolution in nanomaterials utilizing a generative machine learning approach

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Extreme Mechanics Letters Pub Date : 2024-05-22 DOI:10.1016/j.eml.2024.102172
Yuheng Wang , Amirreza Kazemi , Taotao Jing , Zhengming Ding , Like Li , Shengfeng Yang
{"title":"Rapid prediction of grain boundary network evolution in nanomaterials utilizing a generative machine learning approach","authors":"Yuheng Wang ,&nbsp;Amirreza Kazemi ,&nbsp;Taotao Jing ,&nbsp;Zhengming Ding ,&nbsp;Like Li ,&nbsp;Shengfeng Yang","doi":"10.1016/j.eml.2024.102172","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting the behavior of nanomaterials under various conditions presents a significant challenge due to their complex microstructures. While high-fidelity modeling techniques, such as molecular dynamics (MD) simulations, are effective, they are also computationally demanding. Machine learning (ML) models have opened new avenues for the rapid exploration of design spaces. In this work, we developed a deep learning framework based on a conditional generative adversarial network (cGAN) to predict the evolution of grain boundary (GB) networks in nanocrystalline materials under mechanical loads, incorporating both morphological and atomic details. We conducted MD simulations on nanocrystalline tungsten and used the resulting ground-truth data to train our cGAN model. We assessed the performance of our cGAN model by comparing it to a Convolutional Autoencoder (ConvAE) model and examining the impact of changes in geometric morphology and loading conditions on the model's performance. Our cGAN model demonstrated high accuracy in predicting GB network evolution under a variety of conditions. This developed framework shows potential for predicting various materials' behaviors across a wide range of nanomaterials.</p></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"70 ","pages":"Article 102172"},"PeriodicalIF":4.3000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235243162400052X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the behavior of nanomaterials under various conditions presents a significant challenge due to their complex microstructures. While high-fidelity modeling techniques, such as molecular dynamics (MD) simulations, are effective, they are also computationally demanding. Machine learning (ML) models have opened new avenues for the rapid exploration of design spaces. In this work, we developed a deep learning framework based on a conditional generative adversarial network (cGAN) to predict the evolution of grain boundary (GB) networks in nanocrystalline materials under mechanical loads, incorporating both morphological and atomic details. We conducted MD simulations on nanocrystalline tungsten and used the resulting ground-truth data to train our cGAN model. We assessed the performance of our cGAN model by comparing it to a Convolutional Autoencoder (ConvAE) model and examining the impact of changes in geometric morphology and loading conditions on the model's performance. Our cGAN model demonstrated high accuracy in predicting GB network evolution under a variety of conditions. This developed framework shows potential for predicting various materials' behaviors across a wide range of nanomaterials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用生成式机器学习方法快速预测纳米材料中的晶界网络演化
由于纳米材料的微观结构复杂,预测其在各种条件下的行为是一项重大挑战。分子动力学(MD)模拟等高保真建模技术虽然有效,但对计算能力的要求也很高。机器学习(ML)模型为快速探索设计空间开辟了新途径。在这项工作中,我们开发了一个基于条件生成对抗网络(cGAN)的深度学习框架,用于预测纳米晶材料中晶界(GB)网络在机械载荷下的演变,其中包含形态和原子细节。我们对纳米晶钨进行了 MD 模拟,并使用由此获得的基本真实数据来训练我们的 cGAN 模型。我们将 cGAN 模型与卷积自动编码器 (ConvAE) 模型进行了比较,并考察了几何形态和加载条件的变化对模型性能的影响,从而评估了 cGAN 模型的性能。我们的 cGAN 模型在预测各种条件下的 GB 网络演变方面表现出很高的准确性。这个开发的框架显示了预测各种纳米材料行为的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
期刊最新文献
Full range fragmentation simulation of nanoflake filler-matrix composite coatings on a polymer substrate A kinematics-based single-actuator setup for constant-curvature bending tests in extremely large deformations Aperture size control in kirigami metamaterials: Towards enhanced performance and applications Origami electronic membranes as highly shape-morphable mechanical and environmental sensing systems Effect of rate on the response and localized transformation patterns in NiTi Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1