Bartosz Machura , Damian Kucharski , Oskar Bozek , Bartosz Eksner , Bartosz Kokoszka , Tomasz Pekala , Mateusz Radom , Marek Strzelczak , Lukasz Zarudzki , Benjamín Gutiérrez-Becker , Agata Krason , Jean Tessier , Jakub Nalepa
{"title":"Deep learning ensembles for detecting brain metastases in longitudinal multi-modal MRI studies","authors":"Bartosz Machura , Damian Kucharski , Oskar Bozek , Bartosz Eksner , Bartosz Kokoszka , Tomasz Pekala , Mateusz Radom , Marek Strzelczak , Lukasz Zarudzki , Benjamín Gutiérrez-Becker , Agata Krason , Jean Tessier , Jakub Nalepa","doi":"10.1016/j.compmedimag.2024.102401","DOIUrl":null,"url":null,"abstract":"<div><p>Metastatic brain cancer is a condition characterized by the migration of cancer cells to the brain from extracranial sites. Notably, metastatic brain tumors surpass primary brain tumors in prevalence by a significant factor, they exhibit an aggressive growth potential and have the capacity to spread across diverse cerebral locations simultaneously. Magnetic resonance imaging (MRI) scans of individuals afflicted with metastatic brain tumors unveil a wide spectrum of characteristics. These lesions vary in size and quantity, spanning from tiny nodules to substantial masses captured within MRI. Patients may present with a limited number of lesions or an extensive burden of hundreds of them. Moreover, longitudinal studies may depict surgical resection cavities, as well as areas of necrosis or edema. Thus, the manual analysis of such MRI scans is difficult, user-dependent and cost-inefficient, and – importantly – it lacks reproducibility. We address these challenges and propose a pipeline for detecting and analyzing brain metastases in longitudinal studies, which benefits from an ensemble of various deep learning architectures originally designed for different downstream tasks (detection and segmentation). The experiments, performed over 275 multi-modal MRI scans of 87 patients acquired in 53 sites, coupled with rigorously validated manual annotations, revealed that our pipeline, built upon open-source tools to ensure its reproducibility, offers high-quality detection, and allows for precisely tracking the disease progression. To objectively quantify the generalizability of models, we introduce a new data stratification approach that accommodates the heterogeneity of the dataset and is used to elaborate training-test splits in a data-robust manner, alongside a new set of quality metrics to objectively assess algorithms. Our system provides a fully automatic and quantitative approach that may support physicians in a laborious process of disease progression tracking and evaluation of treatment efficacy.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"116 ","pages":"Article 102401"},"PeriodicalIF":5.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0895611124000788/pdfft?md5=51dfd8fc9e95917b8971fa4297d3ea4e&pid=1-s2.0-S0895611124000788-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000788","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metastatic brain cancer is a condition characterized by the migration of cancer cells to the brain from extracranial sites. Notably, metastatic brain tumors surpass primary brain tumors in prevalence by a significant factor, they exhibit an aggressive growth potential and have the capacity to spread across diverse cerebral locations simultaneously. Magnetic resonance imaging (MRI) scans of individuals afflicted with metastatic brain tumors unveil a wide spectrum of characteristics. These lesions vary in size and quantity, spanning from tiny nodules to substantial masses captured within MRI. Patients may present with a limited number of lesions or an extensive burden of hundreds of them. Moreover, longitudinal studies may depict surgical resection cavities, as well as areas of necrosis or edema. Thus, the manual analysis of such MRI scans is difficult, user-dependent and cost-inefficient, and – importantly – it lacks reproducibility. We address these challenges and propose a pipeline for detecting and analyzing brain metastases in longitudinal studies, which benefits from an ensemble of various deep learning architectures originally designed for different downstream tasks (detection and segmentation). The experiments, performed over 275 multi-modal MRI scans of 87 patients acquired in 53 sites, coupled with rigorously validated manual annotations, revealed that our pipeline, built upon open-source tools to ensure its reproducibility, offers high-quality detection, and allows for precisely tracking the disease progression. To objectively quantify the generalizability of models, we introduce a new data stratification approach that accommodates the heterogeneity of the dataset and is used to elaborate training-test splits in a data-robust manner, alongside a new set of quality metrics to objectively assess algorithms. Our system provides a fully automatic and quantitative approach that may support physicians in a laborious process of disease progression tracking and evaluation of treatment efficacy.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.