{"title":"Deciding Irreducibility/Indecomposability of Feedback Shift Registers Is NP-Hard","authors":"Lin Wang","doi":"10.1049/2024/3219604","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Feedback shift registers (FSRs) are used as a fundamental component in electronics and confidential communication. A FSR <i>f</i> is said to be reducible if all the output sequences of another FSR <i>g</i> can also be generated by <i>f</i> and the FSR <i>g</i> costs less memory than <i>f</i>. A FSR is said to be decomposable if it has the same set of output sequences as a cascade connection of two FSRs. Two polynomial-time computable transformations from Boolean circuits to FSRs are proposed such that the output FSR of the first (resp. second) transformation is irreducible (resp. indecomposable) if and only if the input Boolean circuit is satisfiable. Through the two transformations, it is proved that deciding irreducibility (indecomposability) of FSRs is <b>NP</b>-hard. Additionally, FSRs are constructed to show that there exist infinitely many irreducible (resp. indecomposable) FSRs which are decomposable (resp. reducible).</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2024 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/3219604","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/3219604","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Feedback shift registers (FSRs) are used as a fundamental component in electronics and confidential communication. A FSR f is said to be reducible if all the output sequences of another FSR g can also be generated by f and the FSR g costs less memory than f. A FSR is said to be decomposable if it has the same set of output sequences as a cascade connection of two FSRs. Two polynomial-time computable transformations from Boolean circuits to FSRs are proposed such that the output FSR of the first (resp. second) transformation is irreducible (resp. indecomposable) if and only if the input Boolean circuit is satisfiable. Through the two transformations, it is proved that deciding irreducibility (indecomposability) of FSRs is NP-hard. Additionally, FSRs are constructed to show that there exist infinitely many irreducible (resp. indecomposable) FSRs which are decomposable (resp. reducible).
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf