Analytical control of imatinib in bioanalytical samples using graphene quantum dots sensing.

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Analytical and Bioanalytical Chemistry Pub Date : 2024-12-01 Epub Date: 2024-05-25 DOI:10.1007/s00216-024-05346-1
María A García-Trejo, Gregorio Castañeda, Ángel Ríos
{"title":"Analytical control of imatinib in bioanalytical samples using graphene quantum dots sensing.","authors":"María A García-Trejo, Gregorio Castañeda, Ángel Ríos","doi":"10.1007/s00216-024-05346-1","DOIUrl":null,"url":null,"abstract":"<p><p>An analytical method for the determination of imatinib (IMA, the primary treatment for chronic myeloid leukemia), based on the fluorescence properties of graphene quantum dots (GQDs), is reported in this work. The method is addressed to the analytical control of IMA in biological and pharmaceutical samples, due to the present interest in the control of the doses of this anticancer drug, as well as the therapeutic monitoring. The whole method involves the use of a solid-phase extraction (SPE) procedure, followed by an evaporation step, for the treatment of biological samples. For that, tC18 sorbent cartridges were used. After the sample treatment, the solution containing the analyte was mixed with an aqueous solution of GQDs at pH 7.2, and the fluorescent quenching of GQDs was measured. IMA was determined in the 10-250 µg L<sup>-1</sup> range, with a limit of detection of 21 µg L<sup>-1</sup> and a precision of 1.5% as relative standard deviation, measured in terms of reproducibility. The recovery for biological samples was in the 84-113% range.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"7267-7276"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05346-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

An analytical method for the determination of imatinib (IMA, the primary treatment for chronic myeloid leukemia), based on the fluorescence properties of graphene quantum dots (GQDs), is reported in this work. The method is addressed to the analytical control of IMA in biological and pharmaceutical samples, due to the present interest in the control of the doses of this anticancer drug, as well as the therapeutic monitoring. The whole method involves the use of a solid-phase extraction (SPE) procedure, followed by an evaporation step, for the treatment of biological samples. For that, tC18 sorbent cartridges were used. After the sample treatment, the solution containing the analyte was mixed with an aqueous solution of GQDs at pH 7.2, and the fluorescent quenching of GQDs was measured. IMA was determined in the 10-250 µg L-1 range, with a limit of detection of 21 µg L-1 and a precision of 1.5% as relative standard deviation, measured in terms of reproducibility. The recovery for biological samples was in the 84-113% range.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用石墨烯量子点传感技术对生物分析样品中的伊马替尼进行分析控制。
本研究基于石墨烯量子点(GQDs)的荧光特性,报告了一种测定伊马替尼(IMA,慢性粒细胞白血病的主要治疗药物)的分析方法。该方法适用于生物和药物样本中 IMA 的分析控制,因为目前人们对这种抗癌药物的剂量控制和治疗监测很感兴趣。整个方法采用固相萃取(SPE)程序,然后通过蒸发步骤处理生物样品。为此,使用了 tC18 吸附剂滤芯。样品处理后,将含有分析物的溶液与 pH 值为 7.2 的 GQDs 水溶液混合,然后测量 GQDs 的荧光淬灭。IMA 的测定范围为 10-250 µg L-1,检出限为 21 µg L-1,精确度为相对标准偏差的 1.5%(以重现性计)。生物样品的回收率在 84-113% 之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
期刊最新文献
Correction to: Extraction of redox extracellular vesicles using exclusion‑based sample preparation. Correction to: Method development of a novel PK assay for antibody-conjugated drug measurement of ADCs using peptide-linker drug analyte. Correction to: Soft ionization mechanisms in flexible μ‑tube plasma-elucidation of He‑, Ar‑, Kr‑, and Xe‑FμTP. Electrochemiluminescent imaging of a NADH-based enzymatic reaction confined within giant liposomes. Analytical control of imatinib in bioanalytical samples using graphene quantum dots sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1