Frequency-Dependent Variability of Pulse Wave Transit Time: Pilot Study

IF 0.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Doklady Biochemistry and Biophysics Pub Date : 2024-05-25 DOI:10.1134/S1607672924700807
A. A. Grinevich, N. K. Chemeris
{"title":"Frequency-Dependent Variability of Pulse Wave Transit Time: Pilot Study","authors":"A. A. Grinevich,&nbsp;N. K. Chemeris","doi":"10.1134/S1607672924700807","DOIUrl":null,"url":null,"abstract":"<p>The dynamics of the pulse wave (PW) associated with the PW transit time variability (PWTTV) determines the peripheral pulse rate variability, which is used as a surrogate for heart rate variability (HRV). The aim of the work is to analyze the frequency-dependent dynamics of PWTTV and to identify the possible frequency-phase modulation of PW velocity oscillations on the transit from the heart to the soft tissues of the distal parts of the upper extremities. RR-interval recordings and synchronous records of photoplethysmograms of 12 conditionally healthy subjects from the PhysioNet open database were used in this work. Using the Hilbert–Huang transform 3 spectral components of PWTTV and HRV were identified. It was shown that the amplitudes of PWTTV oscillations were many times (up to 8.4 times) smaller than the amplitudes of HRV, and the peaks of PWTTV spectral components were shifted towards higher frequencies than those of HRV. Functional relations between PWTTV and HRV, which can determine the phase modulation of periodic changes in the PW propagation velocity, were revealed.</p>","PeriodicalId":529,"journal":{"name":"Doklady Biochemistry and Biophysics","volume":"516 1","pages":"107 - 110"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S1607672924700807","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamics of the pulse wave (PW) associated with the PW transit time variability (PWTTV) determines the peripheral pulse rate variability, which is used as a surrogate for heart rate variability (HRV). The aim of the work is to analyze the frequency-dependent dynamics of PWTTV and to identify the possible frequency-phase modulation of PW velocity oscillations on the transit from the heart to the soft tissues of the distal parts of the upper extremities. RR-interval recordings and synchronous records of photoplethysmograms of 12 conditionally healthy subjects from the PhysioNet open database were used in this work. Using the Hilbert–Huang transform 3 spectral components of PWTTV and HRV were identified. It was shown that the amplitudes of PWTTV oscillations were many times (up to 8.4 times) smaller than the amplitudes of HRV, and the peaks of PWTTV spectral components were shifted towards higher frequencies than those of HRV. Functional relations between PWTTV and HRV, which can determine the phase modulation of periodic changes in the PW propagation velocity, were revealed.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脉搏波传输时间随频率的变化:试验性研究
脉搏波(PW)的动态变化与脉搏波传输时间变异性(PWTTV)有关,它决定了外周脉率变异性,而外周脉率变异性被用作心率变异性(HRV)的代用指标。这项工作的目的是分析脉搏波传输时间变异的频率动态,并确定脉搏波速度振荡从心脏传输到上肢远端软组织时可能存在的频率相位调制。这项研究使用了物理网开放数据库中 12 名条件健康受试者的 RR 间隔记录和光速图同步记录。利用希尔伯特-黄变换识别了 PWTTV 和 HRV 的 3 个频谱成分。结果表明,脉搏波色谱图振荡的振幅比心率变异的振幅小很多倍(最多为 8.4 倍),而且脉搏波色谱图频谱成分的峰值比心率变异的峰值偏向于更高的频率。研究揭示了 PWTTV 与心率变异之间的功能关系,这种关系可以确定 PW 传播速度周期性变化的相位调制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Doklady Biochemistry and Biophysics
Doklady Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
1.60
自引率
12.50%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Doklady Biochemistry and Biophysics is a journal consisting of English translations of articles published in Russian in biochemistry and biophysics sections of the Russian-language journal Doklady Akademii Nauk. The journal''s goal is to publish the most significant new research in biochemistry and biophysics carried out in Russia today or in collaboration with Russian authors. The journal accepts only articles in the Russian language that are submitted or recommended by acting Russian or foreign members of the Russian Academy of Sciences. The journal does not accept direct submissions in English.
期刊最新文献
Development of a Panel of Biomarkers for Differential Diagnosis of Multiple Sclerosis. Transriptome Analysis of Peripheral Blood Monocytes in Chronic Obstructive Pulmonary Disease Patients. A Study of the Comparability of the Pharmacodynamic, Toxicological, and Pharmacokinetic Properties of the Reference Drug Pulmozyme® and the Biosimilar Drug Tigerase®. Effect of Bioplastic Material on Adhesion, Growth, and Proliferative Activity of Human Fibroblasts When Incubated in Solutions Mimic the Acidity of Wound an Acute and Chronic Inflammation. Effects of Overexpression of Specific Subunits SAYP, BAP170 of the Chromatin Remodeling Complex in Drosophila Melanogaster.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1