Shuai Zhao , Chunyun Xu , Wanfen Pu , Chengdong Yuan , Mikhail A. Varfolomeev , Vladislav Sudakov
{"title":"Feasibility of spontaneous combustion in ultra-deep high-pressure shale oil reservoirs during air injection","authors":"Shuai Zhao , Chunyun Xu , Wanfen Pu , Chengdong Yuan , Mikhail A. Varfolomeev , Vladislav Sudakov","doi":"10.1016/j.tca.2024.179783","DOIUrl":null,"url":null,"abstract":"<div><p>There is a lack of research on the spontaneous combustion phenomenon and its main influencing factors in ultra-deep high-pressure shale oil reservoirs with additional fracturing. In this study, we examine the exothermic characteristics of shale oil oxidation using high-pressure differential scanning calorimetry (HP-DSC) and accelerating rate calorimetry (ARC). Subsequently, a reaction kinetics model is built by integrating the HP-DSC and ARC data. Furthermore, the main factors affecting spontaneous combustion are identified by combining the simulation results with range and variance analyses. The HP-DSC and ARC results indicate a positive potential for achieving spontaneous combustion in shale oil. The developed reaction kinetics model successfully captures the exothermic characteristics of shale oil oxidation. The simulation results demonstrate that spontaneous combustion occurs approximately 5 m away from the injection well, with a delay time of 10.74 days. The critical factors determining the occurrence of spontaneous combustion are O<sub>2</sub> concentration and oil saturation.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"738 ","pages":"Article 179783"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040603124001229","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
There is a lack of research on the spontaneous combustion phenomenon and its main influencing factors in ultra-deep high-pressure shale oil reservoirs with additional fracturing. In this study, we examine the exothermic characteristics of shale oil oxidation using high-pressure differential scanning calorimetry (HP-DSC) and accelerating rate calorimetry (ARC). Subsequently, a reaction kinetics model is built by integrating the HP-DSC and ARC data. Furthermore, the main factors affecting spontaneous combustion are identified by combining the simulation results with range and variance analyses. The HP-DSC and ARC results indicate a positive potential for achieving spontaneous combustion in shale oil. The developed reaction kinetics model successfully captures the exothermic characteristics of shale oil oxidation. The simulation results demonstrate that spontaneous combustion occurs approximately 5 m away from the injection well, with a delay time of 10.74 days. The critical factors determining the occurrence of spontaneous combustion are O2 concentration and oil saturation.
期刊介绍:
Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application.
The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta.
The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas:
- New and improved instrumentation and methods
- Thermal properties and behavior of materials
- Kinetics of thermally stimulated processes