MOLO-SLAM: A Semantic SLAM for Accurate Removal of Dynamic Objects in Agricultural Environments

Jinhong Lv, Bei‐Wei Yao, Haijun Guo, Changlun Gao, Weibin Wu, Junlin Li, Shunli Sun, Qing Luo
{"title":"MOLO-SLAM: A Semantic SLAM for Accurate Removal of Dynamic Objects in Agricultural Environments","authors":"Jinhong Lv, Bei‐Wei Yao, Haijun Guo, Changlun Gao, Weibin Wu, Junlin Li, Shunli Sun, Qing Luo","doi":"10.3390/agriculture14060819","DOIUrl":null,"url":null,"abstract":"Visual simultaneous localization and mapping (VSLAM) is a foundational technology that enables robots to achieve fully autonomous locomotion, exploration, inspection, and more within complex environments. Its applicability also extends significantly to agricultural settings. While numerous impressive VSLAM systems have emerged, a majority of them rely on static world assumptions. This reliance constrains their use in real dynamic scenarios and leads to increased instability when applied to agricultural contexts. To address the problem of detecting and eliminating slow dynamic objects in outdoor forest and tea garden agricultural scenarios, this paper presents a dynamic VSLAM innovation called MOLO-SLAM (mask ORB label optimization SLAM). MOLO-SLAM merges the ORBSLAM2 framework with the Mask-RCNN instance segmentation network, utilizing masks and bounding boxes to enhance the accuracy and cleanliness of 3D point clouds. Additionally, we used the BundleFusion reconstruction algorithm for 3D mesh model reconstruction. By comparing our algorithm with various dynamic VSLAM algorithms on the TUM and KITTI datasets, the results demonstrate significant improvements, with enhancements of up to 97.72%, 98.51%, and 28.07% relative to the original ORBSLAM2 on the three datasets. This showcases the outstanding advantages of our algorithm.","PeriodicalId":503580,"journal":{"name":"Agriculture","volume":"3 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriculture14060819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visual simultaneous localization and mapping (VSLAM) is a foundational technology that enables robots to achieve fully autonomous locomotion, exploration, inspection, and more within complex environments. Its applicability also extends significantly to agricultural settings. While numerous impressive VSLAM systems have emerged, a majority of them rely on static world assumptions. This reliance constrains their use in real dynamic scenarios and leads to increased instability when applied to agricultural contexts. To address the problem of detecting and eliminating slow dynamic objects in outdoor forest and tea garden agricultural scenarios, this paper presents a dynamic VSLAM innovation called MOLO-SLAM (mask ORB label optimization SLAM). MOLO-SLAM merges the ORBSLAM2 framework with the Mask-RCNN instance segmentation network, utilizing masks and bounding boxes to enhance the accuracy and cleanliness of 3D point clouds. Additionally, we used the BundleFusion reconstruction algorithm for 3D mesh model reconstruction. By comparing our algorithm with various dynamic VSLAM algorithms on the TUM and KITTI datasets, the results demonstrate significant improvements, with enhancements of up to 97.72%, 98.51%, and 28.07% relative to the original ORBSLAM2 on the three datasets. This showcases the outstanding advantages of our algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MOLO-SLAM:用于准确移除农业环境中动态物体的语义 SLAM
视觉同步定位和绘图(VSLAM)是一项基础技术,可使机器人在复杂环境中实现完全自主的运动、探索、检查等。它的适用范围还大大扩展到农业环境。虽然已经出现了许多令人印象深刻的 VSLAM 系统,但其中大多数都依赖于静态世界假设。这种依赖性限制了它们在真实动态场景中的应用,并导致其在农业环境中的不稳定性增加。为了解决在室外森林和茶园等农业场景中检测和消除慢速动态物体的问题,本文提出了一种名为 MOLO-SLAM(掩码 ORB 标签优化 SLAM)的动态 VSLAM 创新技术。MOLO-SLAM 将 ORBSLAM2 框架与 Mask-RCNN 实例分割网络相结合,利用掩码和边界框来提高三维点云的准确性和清洁度。此外,我们还使用了 BundleFusion 重建算法来重建三维网格模型。通过在 TUM 和 KITTI 数据集上将我们的算法与各种动态 VSLAM 算法进行比较,结果表明我们的算法有了显著的改进,在这三个数据集上,相对于原始 ORBSLAM2,我们的算法分别提高了 97.72%、98.51% 和 28.07%。这充分展示了我们算法的突出优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Distribution and Pollution Pathway Analysis of Perfluoroalkyl Acids (PFAAs) in a Typical Agricultural Plastic Greenhouse for Cultivated Vegetables Review of the Report on the Nutritional and Health-Promoting Values of Species of the Rubus L. Genus Farmers’ Willingness to Engage in Ecological Compensation for Crop Rotation in China’s Black Soil Regions Influence of Growth Stages and Additives on the Fermentation Quality and Microbial Profiles of Whole-Plant Millet Silage The Brown Marmorated Stink Bug (Hemiptera: Pentatomidae)—A Major Challenge for Global Plant Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1