Compositional Design and Thermal Processing of a Novel Lead-Free Cu–Zn–Al–Sn Medium Entropy Brass Alloy

Metals Pub Date : 2024-05-24 DOI:10.3390/met14060620
Spyridon Chaskis, Stavroula Maritsa, Paul Stavroulakis, S. Papadopoulou, Russell Goodall, S. Papaefthymiou
{"title":"Compositional Design and Thermal Processing of a Novel Lead-Free Cu–Zn–Al–Sn Medium Entropy Brass Alloy","authors":"Spyridon Chaskis, Stavroula Maritsa, Paul Stavroulakis, S. Papadopoulou, Russell Goodall, S. Papaefthymiou","doi":"10.3390/met14060620","DOIUrl":null,"url":null,"abstract":"In the current work, a novel medium entropy copper alloy was designed with the aim of avoiding the use of expensive, hazardous or scarce alloying elements and instead employing widely available and cost-effective alternatives. In order to investigate this unknown region of multicomponent alloy compositions, the thermo-physical parameters were calculated and the CALPHAD method was utilized. This led to the design of the Cu50Zn25Al20Sn5 at. % (Cu53.45Zn27.49Al9.08Sn9.98 wt. %) alloy with a relatively low density of 6.86 g/cm3 compared with conventional brasses. The designed alloy was manufactured through vacuum induction melting, producing two ingots weighing 1.2 kg each, which were subjected to a series of heat treatments. The microstructural evolution of the alloy in the as-cast and heat-treated conditions was assessed through optical and scanning electron microscopy. The hardness of the as-cast and heat-treated alloy at room temperature was also studied. The alloy was characterized by a multiphase microstructure containing a major Cu-rich (Cu–Zn–Al) matrix reinforced with a secondary Zn-rich (Zn–Cu) phase and pure Sn. In terms of mechanical properties, the developed alloy exhibited high hardness values of roughly 378 HV0.2 and 499 HV0.2 in the as-cast and heat-treated conditions, respectively.","PeriodicalId":510812,"journal":{"name":"Metals","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/met14060620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the current work, a novel medium entropy copper alloy was designed with the aim of avoiding the use of expensive, hazardous or scarce alloying elements and instead employing widely available and cost-effective alternatives. In order to investigate this unknown region of multicomponent alloy compositions, the thermo-physical parameters were calculated and the CALPHAD method was utilized. This led to the design of the Cu50Zn25Al20Sn5 at. % (Cu53.45Zn27.49Al9.08Sn9.98 wt. %) alloy with a relatively low density of 6.86 g/cm3 compared with conventional brasses. The designed alloy was manufactured through vacuum induction melting, producing two ingots weighing 1.2 kg each, which were subjected to a series of heat treatments. The microstructural evolution of the alloy in the as-cast and heat-treated conditions was assessed through optical and scanning electron microscopy. The hardness of the as-cast and heat-treated alloy at room temperature was also studied. The alloy was characterized by a multiphase microstructure containing a major Cu-rich (Cu–Zn–Al) matrix reinforced with a secondary Zn-rich (Zn–Cu) phase and pure Sn. In terms of mechanical properties, the developed alloy exhibited high hardness values of roughly 378 HV0.2 and 499 HV0.2 in the as-cast and heat-treated conditions, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型无铅铜-锌-铝-锡中熵黄铜合金的成分设计与热加工
在目前的工作中,我们设计了一种新型中熵铜合金,目的是避免使用昂贵、危险或稀缺的合金元素,而是采用可广泛获得且具有成本效益的替代品。为了研究多组分合金成分的这一未知区域,利用 CALPHAD 方法计算了热物理参数。由此设计出了 Cu50Zn25Al20Sn5 at. %(Cu53.45Zn27.49Al9.08Sn9.98 wt.%)合金,与传统黄铜相比,其密度相对较低,为 6.86 g/cm3。所设计的合金是通过真空感应熔炼制造的,生产出两块各重 1.2 千克的铸锭,并对其进行了一系列热处理。通过光学显微镜和扫描电子显微镜评估了合金在铸造和热处理条件下的微观结构演变。此外,还研究了铸造和热处理合金在室温下的硬度。该合金的特点是具有多相微观结构,其中包含主要的富铜(Cu-Zn-Al)基体和次要的富锌(Zn-Cu)相以及纯锡。在机械性能方面,所开发的合金在铸造和热处理条件下分别表现出约 378 HV0.2 和 499 HV0.2 的高硬度值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Obtention of Suitable Pregnant Leach Solution (PLS) for Copper Solvent Extraction Plants from Copper Concentrate Using Hydrogen Peroxide and Iodine in a Sulfuric Acid–Chloride Medium Influence of CAD/CAM Manufacturing Technique and Implant Abutment Angulation on Loosening of Individual Screw-Retained Implant Crowns A Study on the Optimal Powder Metallurgy Process to Obtain Suitable Material Properties of Soft Magnetic Composite Materials for Electric Vehicles Die Casting of Lightweight Thin Fin Heat Sink Using Al-25%Si Advanced FEM Insights into Pressure-Assisted Warm Single-Point Incremental Forming of Ti-6Al-4V Titanium Alloy Sheet Metal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1