FACIAL IMAGE CAPTIONING USING DNN

Vijayalakshmi B
{"title":"FACIAL IMAGE CAPTIONING USING DNN","authors":"Vijayalakshmi B","doi":"10.55041/ijsrem34576","DOIUrl":null,"url":null,"abstract":"Facial analysis, encompassing emotion, age, and gender detection, shows potential in various applications such as human-computer interaction, business, security, and health. This study delves into the development and evaluation of a deep neural network (DNN) model for facial emotion, age, and gender detection. Utilizing a convolutional neural network (CNN) architecture trained on diverse datasets for each task, our model proves effective in predicting facial features. The accuracy of needs assessment is X%, the marginal error (MAE) of age estimation is Y years, and the accuracy of gender classification is Z%.","PeriodicalId":13661,"journal":{"name":"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT","volume":"22 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55041/ijsrem34576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Facial analysis, encompassing emotion, age, and gender detection, shows potential in various applications such as human-computer interaction, business, security, and health. This study delves into the development and evaluation of a deep neural network (DNN) model for facial emotion, age, and gender detection. Utilizing a convolutional neural network (CNN) architecture trained on diverse datasets for each task, our model proves effective in predicting facial features. The accuracy of needs assessment is X%, the marginal error (MAE) of age estimation is Y years, and the accuracy of gender classification is Z%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 DNN 制作面部图像字幕
面部分析包括情感、年龄和性别检测,在人机交互、商业、安全和健康等各种应用领域都显示出潜力。本研究深入探讨了用于面部情绪、年龄和性别检测的深度神经网络(DNN)模型的开发和评估。我们的模型利用卷积神经网络(CNN)架构,在不同任务的数据集上进行训练,证明能有效预测面部特征。需求评估的准确率为 X%,年龄估计的边际误差(MAE)为 Y 年,性别分类的准确率为 Z%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Vulnerabilities and Threats in Large Language Models: Safeguarding Against Exploitation and Misuse Experimental Investigation of Leachate Treatment Using Low-Cost Adsorbents Exploring Vulnerabilities and Threats in Large Language Models: Safeguarding Against Exploitation and Misuse BANK TRANSACTION USING IRIS AND BIOMETRIC Experimental Investigation of Leachate Treatment Using Low-Cost Adsorbents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1