Hybrid catalyst-assisted synthesis of multifunctional carbon derived from Camellia shell for high-performance sodium-ion batteries and sodium-ion hybrid capacitors

Hanshu Mao, Sisi Yang, Yingjun Yang, Jinyue Yang, Guizhi Yuan, Mingtao Zheng, Hang Hu, Yeru Liang, Xiaoyuan Yu
{"title":"Hybrid catalyst-assisted synthesis of multifunctional carbon derived from Camellia shell for high-performance sodium-ion batteries and sodium-ion hybrid capacitors","authors":"Hanshu Mao,&nbsp;Sisi Yang,&nbsp;Yingjun Yang,&nbsp;Jinyue Yang,&nbsp;Guizhi Yuan,&nbsp;Mingtao Zheng,&nbsp;Hang Hu,&nbsp;Yeru Liang,&nbsp;Xiaoyuan Yu","doi":"10.1002/cnl2.146","DOIUrl":null,"url":null,"abstract":"<p>Biomass-derived carbon as energy storage materials have gradually attracted widespread attention due to their low cost, sustainability, and inherent structural advantages. Herein, hard carbon (H-1200) and porous carbon (PC-800) for sodium-ion batteries (SIBs), sodium-ion capacitors (SICs) half cells and sodium-ion hybrid capacitors (SIHCs) have been synthesized from the same biomass precursor of Camellia shells through different treatments. H-1200 synthesized by directly high-temperature carbonization possesses a rational graphitic layer structure and plentiful heteroatoms. When applied as anode for SIBs, it exhibits a reversible capacity of 365.5 mAh g<sup>–1</sup> at 25 mA g<sup>–1</sup> and capacity retention 89.0% after 400 cycles at 200 mA g<sup>–1</sup>. Additionally, PC-800 prepared by catalytic carbonization of K<sub>2</sub>C<sub>2</sub>O<sub>4</sub>/CaC<sub>2</sub>O<sub>4</sub> hybrid catalyst has a sophisticated porous structure and a high surface area of 2186.9 m<sup>2</sup> g<sup>–1</sup>. When employed as a cathode for SICs, it delivers a maximum capacity 104.2 mAh g<sup>–1</sup> at 100 mA g<sup>–1</sup> and 35.0 mAh g<sup>–1</sup> at 5 A g<sup>–1</sup>. Furthermore, the all carbon assembled SIHC (H-1200||PC-800) using H-1200 as anode and PC-800 as cathode, features a broad output voltage range (0.01 ~ 4.1 V), high energy density of 161.5 Wh kg<sup>–1</sup>, power density of 12896.1 W kg<sup>–1</sup>, and superior capacity retention of 90.32% after 10000 cycles at 10 A g<sup>–1</sup>. This research result provide a new horizon for constructing low-cost and large-scale production of biomass derived carbon for energy storage materials.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.146","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biomass-derived carbon as energy storage materials have gradually attracted widespread attention due to their low cost, sustainability, and inherent structural advantages. Herein, hard carbon (H-1200) and porous carbon (PC-800) for sodium-ion batteries (SIBs), sodium-ion capacitors (SICs) half cells and sodium-ion hybrid capacitors (SIHCs) have been synthesized from the same biomass precursor of Camellia shells through different treatments. H-1200 synthesized by directly high-temperature carbonization possesses a rational graphitic layer structure and plentiful heteroatoms. When applied as anode for SIBs, it exhibits a reversible capacity of 365.5 mAh g–1 at 25 mA g–1 and capacity retention 89.0% after 400 cycles at 200 mA g–1. Additionally, PC-800 prepared by catalytic carbonization of K2C2O4/CaC2O4 hybrid catalyst has a sophisticated porous structure and a high surface area of 2186.9 m2 g–1. When employed as a cathode for SICs, it delivers a maximum capacity 104.2 mAh g–1 at 100 mA g–1 and 35.0 mAh g–1 at 5 A g–1. Furthermore, the all carbon assembled SIHC (H-1200||PC-800) using H-1200 as anode and PC-800 as cathode, features a broad output voltage range (0.01 ~ 4.1 V), high energy density of 161.5 Wh kg–1, power density of 12896.1 W kg–1, and superior capacity retention of 90.32% after 10000 cycles at 10 A g–1. This research result provide a new horizon for constructing low-cost and large-scale production of biomass derived carbon for energy storage materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合催化剂辅助合成提取自山茶壳的多功能碳,用于高性能钠离子电池和钠离子混合电容器
生物质衍生碳作为储能材料,因其低成本、可持续性和固有的结构优势而逐渐受到广泛关注。本文以山茶花壳为生物质前驱体,通过不同的处理方法合成了用于钠离子电池(SIB)、钠离子电容器(SIC)半电池和钠离子混合电容器(SIHC)的硬质碳(H-1200)和多孔碳(PC-800)。直接高温碳化合成的 H-1200 具有合理的石墨层结构和丰富的杂原子。将其用作 SIB 的阳极时,在 25 mA g-1 的条件下,其可逆容量为 365.5 mAh g-1,在 200 mA g-1 条件下循环 400 次后,容量保持率为 89.0%。此外,通过催化碳化 K2C2O4/CaC2O4 混合催化剂制备的 PC-800 具有复杂的多孔结构和 2186.9 平方米 g-1 的高表面积。将其用作 SIC 的阴极时,当电流为 100 mA g-1 时,最大容量为 104.2 mAh g-1;当电流为 5 A g-1 时,最大容量为 35.0 mAh g-1。此外,以 H-1200 为阳极、PC-800 为阴极的全碳组装 SIHC (H-1200||PC-800)具有输出电压范围宽(0.01 ~ 4.1 V)、能量密度高(161.5 Wh kg-1)、功率密度高(12896.1 W kg-1)以及在 10 A g-1 条件下循环 10000 次后容量保持率高(90.32%)等特点。这项研究成果为构建低成本、大规模生产生物质衍生碳储能材料开辟了新天地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A systematic study of switching, optoelectronics, and gas‐sensitive properties of PCF‐graphene‐based nanodevices: Insights from DFT study Issue Information Front Cover: Carbon Neutralization, Volume 3, Issue 4, July 2024 Inside Front Cover Image: Carbon Neutralization, Volume 3, Issue 4, July 2024 Back Cover Image: Carbon Neutralization, Volume 3, Issue 4, July 2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1