Analysis of Lubrication Regimes for Porous Sliding Bearing

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL Lubricants Pub Date : 2024-05-23 DOI:10.3390/lubricants12060184
Aleksandar Marinković, Blaža Stojanović, Carsten Gachot, Tatjana Lazović
{"title":"Analysis of Lubrication Regimes for Porous Sliding Bearing","authors":"Aleksandar Marinković, Blaža Stojanović, Carsten Gachot, Tatjana Lazović","doi":"10.3390/lubricants12060184","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to analyze the lubrication quality of porous sliding bearings, starting from the bearing model and in combination with experimental results aimed at analyzing the lubrication regimes of different working conditions. The separation between the surfaces by the lubricant layer is what determines the regime. The quality and type of lubrication regime are determined by parameters in the mathematical model including typically speed, load, motion, materials, environment, etc., which have an impact on friction. Besides those elements, important parameters such as coefficient of friction (COF) and working temperature are to be measured due to experimental investigations to detect an equilibrium working state. The self-lubrication mechanism in porous metal bearings improves their service life and lubrication processes; however, the COF still varies within a wide interval. This variability can be understood, considering that during bearing operation it operates within a broad range of lubrication regimes. Those findings are explained in the paper by using a combination of calculated parameters according to the bearing model and in combination with our own results of experimental investigations. With the obtained results for particular working conditions, the authors are trying to explain, in the form of a diagram with the limit line as an important outcome of the work, that the lubrication regime for porous metal bearings could arise from boundary lubrication (BL) close to hydrodynamic lubrication (HDL).","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12060184","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to analyze the lubrication quality of porous sliding bearings, starting from the bearing model and in combination with experimental results aimed at analyzing the lubrication regimes of different working conditions. The separation between the surfaces by the lubricant layer is what determines the regime. The quality and type of lubrication regime are determined by parameters in the mathematical model including typically speed, load, motion, materials, environment, etc., which have an impact on friction. Besides those elements, important parameters such as coefficient of friction (COF) and working temperature are to be measured due to experimental investigations to detect an equilibrium working state. The self-lubrication mechanism in porous metal bearings improves their service life and lubrication processes; however, the COF still varies within a wide interval. This variability can be understood, considering that during bearing operation it operates within a broad range of lubrication regimes. Those findings are explained in the paper by using a combination of calculated parameters according to the bearing model and in combination with our own results of experimental investigations. With the obtained results for particular working conditions, the authors are trying to explain, in the form of a diagram with the limit line as an important outcome of the work, that the lubrication regime for porous metal bearings could arise from boundary lubrication (BL) close to hydrodynamic lubrication (HDL).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多孔滑动轴承的润滑机制分析
本文的目的是从轴承模型出发,结合实验结果分析多孔滑动轴承的润滑质量,旨在分析不同工作条件下的润滑状态。润滑层在表面之间的分离决定了润滑状态。润滑机制的质量和类型由数学模型中的参数决定,这些参数包括典型的速度、载荷、运动、材料、环境等,它们都会对摩擦产生影响。除这些因素外,摩擦系数(COF)和工作温度等重要参数也需要通过实验研究来测量,以检测平衡工作状态。多孔金属轴承的自润滑机制提高了其使用寿命和润滑过程,但摩擦系数仍在很大范围内变化。考虑到轴承在运行过程中会在多种润滑状态下工作,这种变化是可以理解的。本文结合轴承模型的计算参数和我们自己的实验研究结果,对上述结论进行了解释。根据特定工作条件下获得的结果,作者试图通过极限线图的形式解释多孔金属轴承的润滑机制可能来自边界润滑(BL)和流体动力润滑(HDL)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
期刊最新文献
Theoretical and Experimental Study of Flexible Structure Tilting Pad Bearings Considering Deformation Comparative Study on the Lubrication of Ti3C2TX MXene and Graphene Oxide Nanofluids for Titanium Alloys Study of Lubrication Performance and Churning Loss under Mixed Lubrication Mode in Gearbox Investigation on the Static Performance of Surface-Throttling Frictionless Pneumatic Cylinder through Finite Element Method Numerical Simulations and Experimental Validation of Squeeze Film Dampers for Aircraft Jet Engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1