Autonomous Full 3D Coverage Using an Aerial Vehicle, Performing Localization, Path Planning, and Navigation Towards Indoors Inventorying for the Logistics Domain
{"title":"Autonomous Full 3D Coverage Using an Aerial Vehicle, Performing Localization, Path Planning, and Navigation Towards Indoors Inventorying for the Logistics Domain","authors":"Kosmas Tsiakas, E. Tsardoulias, A. Symeonidis","doi":"10.3390/robotics13060083","DOIUrl":null,"url":null,"abstract":"Over the last years, a rapid evolution of unmanned aerial vehicle (UAV) usage in various applications has been observed. Their use in indoor environments requires a precise perception of the surrounding area, immediate response to its changes, and, consequently, a robust position estimation. This paper provides an implementation of navigation algorithms for solving the problem of fast, reliable, and low-cost inventorying in the logistics industry. The drone localization is achieved with a particle filter algorithm that uses an array of distance sensors and an inertial measurement unit (IMU) sensor. Navigation is based on a proportional–integral–derivative (PID) position controller that ensures an obstacle-free path within the known 3D map. As for the full 3D coverage, an extraction of the targets and then their final succession towards optimal coverage is performed. Finally, a series of experiments are carried out to examine the robustness of the positioning system using different motion patterns and velocities. At the same time, various ways of traversing the environment are examined by using different configurations of the sensor that is used to perform the area coverage.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics13060083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Over the last years, a rapid evolution of unmanned aerial vehicle (UAV) usage in various applications has been observed. Their use in indoor environments requires a precise perception of the surrounding area, immediate response to its changes, and, consequently, a robust position estimation. This paper provides an implementation of navigation algorithms for solving the problem of fast, reliable, and low-cost inventorying in the logistics industry. The drone localization is achieved with a particle filter algorithm that uses an array of distance sensors and an inertial measurement unit (IMU) sensor. Navigation is based on a proportional–integral–derivative (PID) position controller that ensures an obstacle-free path within the known 3D map. As for the full 3D coverage, an extraction of the targets and then their final succession towards optimal coverage is performed. Finally, a series of experiments are carried out to examine the robustness of the positioning system using different motion patterns and velocities. At the same time, various ways of traversing the environment are examined by using different configurations of the sensor that is used to perform the area coverage.
期刊介绍:
Robotics publishes original papers, technical reports, case studies, review papers and tutorials in all the aspects of robotics. Special Issues devoted to important topics in advanced robotics will be published from time to time. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications. It provides a forum for information exchange between professionals, academicians and engineers who are working in the area of robotics, helping them to disseminate research findings and to learn from each other’s work. Suitable topics include, but are not limited to: -intelligent robotics, mechatronics, and biomimetics -novel and biologically-inspired robotics -modelling, identification and control of robotic systems -biomedical, rehabilitation and surgical robotics -exoskeletons, prosthetics and artificial organs -AI, neural networks and fuzzy logic in robotics -multimodality human-machine interaction -wireless sensor networks for robot navigation -multi-sensor data fusion and SLAM