Borhan Jarzadeh, Maryam Ghorbani, Foroogh Dastoorian, S. Mojtaba Amininasab
{"title":"Fabrication of a durable hierarchical structure towards superhydrophobicity using functionalized ZnO/PDMS on maleic rosin-modified wood","authors":"Borhan Jarzadeh, Maryam Ghorbani, Foroogh Dastoorian, S. Mojtaba Amininasab","doi":"10.1007/s00107-024-02088-w","DOIUrl":null,"url":null,"abstract":"<div><p>Certain drawbacks, such as hydrophilicity and dimensional instability due to moisture changes, limit wood applications. Environmental-friendly superhydrophobic coatings with a hierarchical structure could enhance the water resistance of wood. In this study, a long-lasting superhydrophobic coating was successfully fabricated by 3-(trimethoxylcyl)propyl methacrylate (TMPS) functionalized ZnO nanoparticles and poly(dimethyl siloxane) (PDMS) on the maleic rosin (MAR) modified wood surface at room temperature. According to the results, MAR and functionalized ZnO nanoparticles, respectively, by creating the chemical modification and rough surface under PDMS, have improved the physical properties of wood. Fourier transform infrared spectroscopy analysis also confirmed the reaction of wood with MAR, the presence of TMPS-modified ZnO nanoparticles, and the PDMS coating on the surface. In field emission scanning electron microscopy micrographs, a suitable hierarchical structure was observed, in which PDMS served as a binding agent for preserving zinc oxide nanoparticles on the surface modified with MAR. The strong adhesion of PDMS to the modified wood surface, and the firmly immobilized TMPS- ZnO nanoparticles resulted in satisfactory abrasion resistance of the superhydrophobic structure. Consequently, a superhydrophobic surface with a water contact angle of 161° was developed based on a hierarchical structure involving nanoparticles/silicones coating on MAR-modified wood.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"82 5","pages":"1381 - 1392"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Wood and Wood Products","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00107-024-02088-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Certain drawbacks, such as hydrophilicity and dimensional instability due to moisture changes, limit wood applications. Environmental-friendly superhydrophobic coatings with a hierarchical structure could enhance the water resistance of wood. In this study, a long-lasting superhydrophobic coating was successfully fabricated by 3-(trimethoxylcyl)propyl methacrylate (TMPS) functionalized ZnO nanoparticles and poly(dimethyl siloxane) (PDMS) on the maleic rosin (MAR) modified wood surface at room temperature. According to the results, MAR and functionalized ZnO nanoparticles, respectively, by creating the chemical modification and rough surface under PDMS, have improved the physical properties of wood. Fourier transform infrared spectroscopy analysis also confirmed the reaction of wood with MAR, the presence of TMPS-modified ZnO nanoparticles, and the PDMS coating on the surface. In field emission scanning electron microscopy micrographs, a suitable hierarchical structure was observed, in which PDMS served as a binding agent for preserving zinc oxide nanoparticles on the surface modified with MAR. The strong adhesion of PDMS to the modified wood surface, and the firmly immobilized TMPS- ZnO nanoparticles resulted in satisfactory abrasion resistance of the superhydrophobic structure. Consequently, a superhydrophobic surface with a water contact angle of 161° was developed based on a hierarchical structure involving nanoparticles/silicones coating on MAR-modified wood.
期刊介绍:
European Journal of Wood and Wood Products reports on original research and new developments in the field of wood and wood products and their biological, chemical, physical as well as mechanical and technological properties, processes and uses. Subjects range from roundwood to wood based products, composite materials and structural applications, with related jointing techniques. Moreover, it deals with wood as a chemical raw material, source of energy as well as with inter-disciplinary aspects of environmental assessment and international markets.
European Journal of Wood and Wood Products aims at promoting international scientific communication and transfer of new technologies from research into practice.