{"title":"Shape Optimization of Hemolysis for Shear Thinning Flows in Moving Domains","authors":"V. Calisti, Š. Nečasová","doi":"10.1137/23m1595485","DOIUrl":null,"url":null,"abstract":". We consider the 3D problem of hemolysis minimization in blood flows, namely the minimization of red blood cells damage, through the shape optimization of moving domains. Such a geometry is adopted to take into account the modeling of rotating systems and blood pumps. The blood flow is described by generalized Navier-Stokes equations, in the particular case of shear thinning flows. The velocity and stress fields are then used as data for a transport equation governing the hemolysis index, aimed to measure the red blood cells damage rate. For a sequence of converging moving domains, we show that a sequence of associated solutions to blood equations converges to a solution of the problem written on the limit moving domain. Thus, we extended the result given in (Sokołowski, Stebel, 2014, in Evol. Eq. Control Theory ) for q ≥ 11 / 5, to the range 6 / 5 < q < 11 / 5, where q is the exponent of the rheological law. We then show that the sequence of hemolysis index solutions also converges to the limit solution. This shape continuity properties allows us to show the existence of minimal shapes for a class of functionals depending on the hemolysis index.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"49 12","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1595485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
. We consider the 3D problem of hemolysis minimization in blood flows, namely the minimization of red blood cells damage, through the shape optimization of moving domains. Such a geometry is adopted to take into account the modeling of rotating systems and blood pumps. The blood flow is described by generalized Navier-Stokes equations, in the particular case of shear thinning flows. The velocity and stress fields are then used as data for a transport equation governing the hemolysis index, aimed to measure the red blood cells damage rate. For a sequence of converging moving domains, we show that a sequence of associated solutions to blood equations converges to a solution of the problem written on the limit moving domain. Thus, we extended the result given in (Sokołowski, Stebel, 2014, in Evol. Eq. Control Theory ) for q ≥ 11 / 5, to the range 6 / 5 < q < 11 / 5, where q is the exponent of the rheological law. We then show that the sequence of hemolysis index solutions also converges to the limit solution. This shape continuity properties allows us to show the existence of minimal shapes for a class of functionals depending on the hemolysis index.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.