{"title":"Shape Optimization of Hemolysis for Shear Thinning Flows in Moving Domains","authors":"V. Calisti, Š. Nečasová","doi":"10.1137/23m1595485","DOIUrl":null,"url":null,"abstract":". We consider the 3D problem of hemolysis minimization in blood flows, namely the minimization of red blood cells damage, through the shape optimization of moving domains. Such a geometry is adopted to take into account the modeling of rotating systems and blood pumps. The blood flow is described by generalized Navier-Stokes equations, in the particular case of shear thinning flows. The velocity and stress fields are then used as data for a transport equation governing the hemolysis index, aimed to measure the red blood cells damage rate. For a sequence of converging moving domains, we show that a sequence of associated solutions to blood equations converges to a solution of the problem written on the limit moving domain. Thus, we extended the result given in (Sokołowski, Stebel, 2014, in Evol. Eq. Control Theory ) for q ≥ 11 / 5, to the range 6 / 5 < q < 11 / 5, where q is the exponent of the rheological law. We then show that the sequence of hemolysis index solutions also converges to the limit solution. This shape continuity properties allows us to show the existence of minimal shapes for a class of functionals depending on the hemolysis index.","PeriodicalId":49531,"journal":{"name":"SIAM Journal on Control and Optimization","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Control and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1595485","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
. We consider the 3D problem of hemolysis minimization in blood flows, namely the minimization of red blood cells damage, through the shape optimization of moving domains. Such a geometry is adopted to take into account the modeling of rotating systems and blood pumps. The blood flow is described by generalized Navier-Stokes equations, in the particular case of shear thinning flows. The velocity and stress fields are then used as data for a transport equation governing the hemolysis index, aimed to measure the red blood cells damage rate. For a sequence of converging moving domains, we show that a sequence of associated solutions to blood equations converges to a solution of the problem written on the limit moving domain. Thus, we extended the result given in (Sokołowski, Stebel, 2014, in Evol. Eq. Control Theory ) for q ≥ 11 / 5, to the range 6 / 5 < q < 11 / 5, where q is the exponent of the rheological law. We then show that the sequence of hemolysis index solutions also converges to the limit solution. This shape continuity properties allows us to show the existence of minimal shapes for a class of functionals depending on the hemolysis index.
期刊介绍:
SIAM Journal on Control and Optimization (SICON) publishes original research articles on the mathematics and applications of control theory and certain parts of optimization theory. Papers considered for publication must be significant at both the mathematical level and the level of applications or potential applications. Papers containing mostly routine mathematics or those with no discernible connection to control and systems theory or optimization will not be considered for publication. From time to time, the journal will also publish authoritative surveys of important subject areas in control theory and optimization whose level of maturity permits a clear and unified exposition.
The broad areas mentioned above are intended to encompass a wide range of mathematical techniques and scientific, engineering, economic, and industrial applications. These include stochastic and deterministic methods in control, estimation, and identification of systems; modeling and realization of complex control systems; the numerical analysis and related computational methodology of control processes and allied issues; and the development of mathematical theories and techniques that give new insights into old problems or provide the basis for further progress in control theory and optimization. Within the field of optimization, the journal focuses on the parts that are relevant to dynamic and control systems. Contributions to numerical methodology are also welcome in accordance with these aims, especially as related to large-scale problems and decomposition as well as to fundamental questions of convergence and approximation.