A stable and robust fault diagnosis method for bearing using lightweight batch normalization-free residual network

Bao Zhu, Chunmeng He
{"title":"A stable and robust fault diagnosis method for bearing using lightweight batch normalization-free residual network","authors":"Bao Zhu, Chunmeng He","doi":"10.1088/1361-6501/ad4f01","DOIUrl":null,"url":null,"abstract":"\n The conventional deep learning-based bearing fault diagnosis method tend to utilize denoising modules to improve the fault diagnosis performance in noisy scenes. However, the addition of denoising modules will increase expensive computational costs, leading to a delayed acquisition of fault diagnosis results. This work proposed a lightweight batch normalization-free residual network without any denoising modules for bearing fault diagnosis which properly rescaled the weights in a standard initialization instead of batch normalization to avoid the exploding gradient problem and vanishing gradient problem at the beginning of training for deep neural networks. Therefore, it prevents the undesirable properties caused by batch normalization. Compared with other methods, the fault diagnosis performance of the proposed method can maintain a high level with different input sizes and batch sizes. Especially in noisy scenes, the testing accuracy of fault diagnosis on different bearing datasets can be improved by 13.54% and 7.74% using fewer parameters and FLOPs on different bearing datasets.","PeriodicalId":510602,"journal":{"name":"Measurement Science and Technology","volume":"59 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad4f01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The conventional deep learning-based bearing fault diagnosis method tend to utilize denoising modules to improve the fault diagnosis performance in noisy scenes. However, the addition of denoising modules will increase expensive computational costs, leading to a delayed acquisition of fault diagnosis results. This work proposed a lightweight batch normalization-free residual network without any denoising modules for bearing fault diagnosis which properly rescaled the weights in a standard initialization instead of batch normalization to avoid the exploding gradient problem and vanishing gradient problem at the beginning of training for deep neural networks. Therefore, it prevents the undesirable properties caused by batch normalization. Compared with other methods, the fault diagnosis performance of the proposed method can maintain a high level with different input sizes and batch sizes. Especially in noisy scenes, the testing accuracy of fault diagnosis on different bearing datasets can be improved by 13.54% and 7.74% using fewer parameters and FLOPs on different bearing datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用轻量级批量无归一化残差网络的轴承稳定鲁棒故障诊断方法
传统的基于深度学习的轴承故障诊断方法倾向于利用去噪模块来提高噪声场景下的故障诊断性能。然而,增加去噪模块会增加昂贵的计算成本,导致故障诊断结果的获取延迟。本研究提出了一种用于轴承故障诊断的无任何去噪模块的轻量级批量归一化残差网络,该网络在标准初始化中对权值进行了适当的重定向,而不是批量归一化,从而避免了深度神经网络在训练初期的梯度爆炸问题和梯度消失问题。因此,它避免了批量归一化带来的不良特性。与其他方法相比,所提方法的故障诊断性能能在不同输入大小和批量大小的情况下保持较高水平。特别是在噪声场景下,使用较少的参数和 FLOPs 对不同轴承数据集进行故障诊断,其测试精度分别提高了 13.54% 和 7.74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Experimental Apparatus to Study the Adsorption of Water on Proxies for Spent Nuclear Fuel Surfaces A Fine-Tuning Prototypical Network for Few-shot Cross-domain Fault Diagnosis Application of wavelet dynamic joint adaptive network guided by pseudo-label alignment mechanism in gearbox fault diagnosis Calculation of the inverse involute function and application to measurement over pins Machine learning classification of permeable conducting spheres in air and seawater using electromagnetic pulses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1