Mohammadreza Moghaddam-Manesh, Reza Darvishi, Ali Moshkriz
{"title":"Innovative High-Performance Antimicrobial Agent and Dye Adsorbent Based on Magnetic/Copper Nanoparticles","authors":"Mohammadreza Moghaddam-Manesh, Reza Darvishi, Ali Moshkriz","doi":"10.1007/s10924-024-03289-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the synthesis and characterization of new magnetic nanoparticles complexed with copper, designated as Fe<sub>3</sub>O<sub>4</sub>@gly@cyclohexylidene-spiro[indoline-[1,3]dithiine]@Cu (FMNP). The structural confirmation of these nanoparticles was achieved through several techniques, including SEM imaging, VSM curves, XRD patterns, TGA and DTG curves, ICP-OES spectroscopy, and FT-IR spectrum analysis. Quantum mechanical studies were also conducted to precisely determine the complex’s position. These nanoparticles demonstrated antimicrobial properties against fungal, Gram-negative, and Gram-positive bacterial strains. The minimum fungicidal concentration (MFC) values ranged from 64 to 128 μg/mL, and the minimum bactericidal concentration (MBC) values varied between 8 and 256 μg/mL, indicating superior inhibitory effects on some microbial species compared to existing antibiotics. Furthermore, the FMNP nanoparticles were utilized in fabricating a crosslinked Oxidized Pectin-Fish Collagen Peptides hydrogel (FHGEL) aimed at adsorbing Congo red from aqueous solutions. The study of FHGEL’s adsorption capacity revealed that incorporating 0.03% FMNP significantly enhanced its ability to adsorb Congo red, showing a 3- to 4-fold increase compared to the hydrogel alone. The adsorption mechanism was attributed to dispersion mechanisms and the relaxation of macromolecules within a three-dimensional polymer network. This was supported by the FHGEL’s adsorption data fitting the R–P model, with the heterogeneity factor (n) value from the Sips isotherm model approaching 1.5, and a maximum adsorption capacity of 750.4 mg/g as predicted by the R–P model. The research findings indicate that all hydrogels adhere to the pseudo-second-order kinetics model, suggesting that FMNP could hold promising applications in the field of nanotechnology and environmental remediation.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03289-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the synthesis and characterization of new magnetic nanoparticles complexed with copper, designated as Fe3O4@gly@cyclohexylidene-spiro[indoline-[1,3]dithiine]@Cu (FMNP). The structural confirmation of these nanoparticles was achieved through several techniques, including SEM imaging, VSM curves, XRD patterns, TGA and DTG curves, ICP-OES spectroscopy, and FT-IR spectrum analysis. Quantum mechanical studies were also conducted to precisely determine the complex’s position. These nanoparticles demonstrated antimicrobial properties against fungal, Gram-negative, and Gram-positive bacterial strains. The minimum fungicidal concentration (MFC) values ranged from 64 to 128 μg/mL, and the minimum bactericidal concentration (MBC) values varied between 8 and 256 μg/mL, indicating superior inhibitory effects on some microbial species compared to existing antibiotics. Furthermore, the FMNP nanoparticles were utilized in fabricating a crosslinked Oxidized Pectin-Fish Collagen Peptides hydrogel (FHGEL) aimed at adsorbing Congo red from aqueous solutions. The study of FHGEL’s adsorption capacity revealed that incorporating 0.03% FMNP significantly enhanced its ability to adsorb Congo red, showing a 3- to 4-fold increase compared to the hydrogel alone. The adsorption mechanism was attributed to dispersion mechanisms and the relaxation of macromolecules within a three-dimensional polymer network. This was supported by the FHGEL’s adsorption data fitting the R–P model, with the heterogeneity factor (n) value from the Sips isotherm model approaching 1.5, and a maximum adsorption capacity of 750.4 mg/g as predicted by the R–P model. The research findings indicate that all hydrogels adhere to the pseudo-second-order kinetics model, suggesting that FMNP could hold promising applications in the field of nanotechnology and environmental remediation.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.